
Model checking of high-level
object oriented specifications: theL f P experience∗

Frédéric Gilliers†, François Bréant?, Denis Poitrenaud‡ & Fabrice Kordon‡

† SAGEM SA
Etablissement d’Eraggny, Avenue du Gros Chêne

95610 Eragny
B.P. 51 - 95612 Cergy Pontoise Cedex, France

frederic.gillier@sagem.com
?LaBRI, équipe vérification et test de systèmes informatiques

Université de Bordeaux 1
Domaine Universitaire, 351, cours de la Libération,

33405 Talence Cedex, FRANCE
francois.breant@lip6.fr

‡ Laboratoire d’Informatique de Paris 6/SRC
Université Pierre & Marie Curie

4, place Jussieu
F-75252 Paris CEDEX 05, France

denis.poitrenaud@lip6.fr, fabrice.kordon@lip6.fr

1 Introduction

The rapid advance of distributed technology has lead to systems stretching limits in terms of complexity
and manageability [10]. This problem is crucial for reliable distributed systems which are required to have
a deterministic behavior. To solve these development problems, it is of interest to consider development
model based development approach [4].

Such an approach distinguishes two strong components [8]:

• a model on which any type of validation or verification techniques may be applied,

• the programs that implement this model and which are generated from it.

Such approaches become widely accepted under various names. As an example, MDA [12] (Model
Driven Architecture) may be considered as a similar approach.

A distributed application is made of two orthogonal aspects: the control aspect, and the computational
aspect. The control aspect manages the global state of the application whereas the computational aspect
covers the domain specific computational components. Model-Based development is of particular interest
for distributed systems for two main reasons. First, they are very difficult to develop since they are very
undeterministic ; thus, some apparently minor choices may have dramatic influences on the system behavior.
Second, control aspects (the difficult part to build) strongly interact with both the execution environment
and computational aspects, these interactions have to be carefully studied to avoid unexpected behaviors.

In that context, formal methods are of particular interest since they allow to prove the system using
model checking techniques for example. However, [11] demonstrated that a major problem for the use of
formal methods is the large education required by engineersto use them. The idea is then to encapsulate
them using ”more common” languages for which no particular (or less) training is required. As an exam-
ple, a similar approach is used in BLAST citeblast that allows the use of C programs as inputs for model
checking.

We have designedL f P (language for Prototyping) [13], a formal notation dedicated to the specification,
verification and code generation of distributed systems.L f P aims at providing a high level notation that fits

∗The work presented in this paper is being performed withing the MORSE project. MORSE is a French government founded
research project (RNTL) with industrial partners (Sagem, Aonix) and academic partners (LIP6 - Univ. P. & M. Curie, LaBRI- Univ.
Bordeaux I).

1

the needs for describing the control part of a distributed system in a way that makes it usable for engineers.
A first experience for verification fromL f P specifications is described in [9] and [14]; it is based on a Petri
net generated from theL f P specification for verification purposes.

This paper presentsdirect model checkingon L f P specifications; which means that model checking is
performed on theL f P specification instead of the corresponding Petri net like in[9, 14]. The symbolic
model checker presented here is based onDDD (Data Decision Diagrams) that are an extension of BDD
for discrete types [3]. We explain how we represent anL f P state usingDDDs and the mechanisms we use
to perform the state exploration. The key issues related to the formal verification ofL f P specifications are
related to the dynamic aspects of this language such as processes creation, RPC mechanisms, addressing,
etc.

Section 2, briefly presents the overall methodology. We thenpresentL f P in section 3 and finally detail
in section 4 whyDDD are well suited to representL f P programs, our coding technique ofL f P programs as
well as issues and problems raised in this study.

2 Object Oriented Methodology

We propose a methodology to handle the specific issues of distributed applications. Its goal is to help the
designer to achieve the development of a distributed application.

LfP Model

Code Generation

control aspect Computational
aspect

High level
Specification

External
Components

Formal model
Generation

Formal
Analysis DISTRIBUTED

APPLICATION

Figure 1: Development methodology associated toL f P

As shown on figure 1, our methodology relies on the separationbetween the control aspect and the data
computation aspect in distributed systems. The control aspect handles the distribution of the application over
the network, and the interaction protocols between the components of an application. The data computation
aspect handles the domain specific calculus required to produce the results.

Our methodology starts with a high level description of the application written in UML. This specifica-
tion should outline the interaction between the computational aspect and the control aspect of the system.
We focus on the modelling of the control aspect since it is related to the specific issues identified in the
development of distributed applications. Therefore, thiscontrol aspect of the specification is translated into
L f P a formal language specifically designed to model distributed applications control aspect.

The interactions between the control aspect and the computational aspect are modeled using construc-
tions of theL f P language very similar to private types defined in the Ada language [6].

The formal model obtained from the specification can then be formally checked against its requirements.
State properties can be stated in the UML description in OCL,but properties which involve series of actions
must be stated in temporal logic directly on theL f P specification. Formal verification ofL f P specifications
is the heart of this paper and will be fully described in section 4.

Once the model meets all its requirements, we provide a code generator for theL f P language. Automatic
code generation translates theL f P semantics to provide an effective implementation of the specification

2

and ensures the correctness of the implementation. It uses the description of the interactions between the
control and the computational aspects to link the generatedcode to the external components. The underlying
mechanism of code generation from anL f P model have been discussed in [5].

3 The LfP language

This section will present theL f P language through a simple client / server example. We show that L f P
provides the appropriate abstractions to model interactions between components of an application.

server

handle_request(num: in out integer)
client

RPC

Figure 2: Simplified class diagram of the client server example

Let us first introduce our example with the simplified UML class diagram of figure 2 that shows the
main model components. The client calls methodhandle request on the server through a RPC. The
server then returns a value through thein out parameter of this method. We will now present theL f P
model corresponding to this system. First we will focus on the static description, then on the dynamic
behavior of the components.

3.1 Static structure of the model

1

Client.itf

8

fifo

all

server.itf

6

fifo

RPC ClientServer

type simple_port is port (integer);

s1 : server with () ;

s2 : server with () ;

c1 : client with (id => 1) ;

c2 : client with (id => 2) ;

c3 : client with (id => 3) ;

c4 : client with (id => 4) ;

Figure 3: Architecture diagram of the client / server example

The static structure of anL f P model is described with anarchitecture diagram. Figure 3 shows the
architecture diagram corresponding to the class diagram offigure 2. The main elements of the class diagram
appear on the architecture diagram:

• interaction classes are translated intoL f P mediawhich are components that define the low level
interaction protocol between the application components;

• classes of the model are translated intoL f P classeswhich implements the control aspects in applica-
tion components.

In order to link the components and define the message queues of the application, the architecure dia-
gram introducesbindersto link the classes and media of the model. They formalize themessage transmis-
sion between the components of the model. They are referenced in the components with variables of type
port identified in the binder’s binding attribute. These variables are of typesimple port defined in the
diagram’s definitions.

The architecture diagram also defines the static instances of the model: two instances ofserver and
four instances ofclient are created on application start up. Each instance of the client has one of its
attribute initialized with a value that identifies it.

3

On this specific architecture diagram, the binder that relatesRPC to clients has multiplicity1, there is
one binder instance for each instance of classclient. The binder that relatesRPC to Server has mutiplicity
all which means that the binder is shared by all the instances of the class. A message in this binder may be
read and handled by any server.

3.2 Dynamic behavior of model components

The dynamic behavior of the components is defined by their behavioral diagrams. This is an automaton that
defines the actions performed by theL f P component in response to an event.

3.2.1 TheRPC media

This media is in charge to implement the “Remote Procedure Call” protocol between the client and the
server, it is shown on figure 4. This means that the media must send the message provided by the client to
the server, read the return message from the server and send it to the client.

&input[id1]:msg; &target:msg;

[id1=id2]

&target[id2]:msg; &input:msg;
msg : message;
input : simple_port;
target : simple_port;
id1, id2 : integer;

Figure 4: Behavioral diagram of mediaRPC

The media is related to client byinput and to the server bytarget; both ports must be initialized by
the component that creates the instance ofRPC.

The first transition of the media reads a message on itsinput port and stores the discriminant inid1.
This discriminant should identify the component that sent the message. Then the message puts the message
in thetarget port.

The media then reads a message from the target port and only accepts it if its discriminant is equal to
id1, that is if it was sent by the component that has sent the request. Finally the return message is sent back
to the client, the media jumps to its initial state and is ready to handle a new message.

3.2.2 Theclient class

This class implements the client side of the system and is displayed on figure 5. This class first creates
an instance of theRPC media to handle its communication with the server. Then it starts a loop that calls
methodhandle request. This means that a message requesting the execution of the method is put in the
portitf, with a discriminant that contains the identifier of the client instance. The transition that contains
this instruction is acall transition which also waits for the method’s return messagewhich updates the
value of parameteri.

i : integer := 0 ;

id : integer ;

itf : simple_port ;

link : rpc ;
link := rpc(target => Server.itf,

 input => itf)

&itf [id]:handle_request(i);[i<=5][i>5]

Figure 5: Behavioral diagram of classclient

When the value ofi becomes greater than five, the loops ends and the client finishes its execution.

4

3.2.3 Theserver class

The classserver handles the request. Its main diagram is displayed on figure 6(a). When instanciated,
a server keeps waiting for the activation of methodhandle request. The behavior of this method is
displayed on figure 6(b). It is activated by the arrival of an activation message on portitf which is the
shared binder between theRPC media and the server class on the architecture diagram of figure 3.

itf : simple_port ;

procedure handle_request (num : inout integer) ;

handle_request

(a) main diagram of the class

&itf; num:=integer'succ(num);

procedure handle_request(num : inout integer) is end;

(b) behavioral diagram of method
handle request

Figure 6: Behavioral diagrams of classserver

The method simply increases the value of its actual parameter and returns. Since the parameter mode
is inout, the new value is sent through a return message to the caller.This message is implicitly sent on
the method’s activation port when the method returns. Sincethe discriminant of the return message is not
specified, the discriminant of the activation message is used. In this case, it means that the discriminant of
the return message contains the identifier of the client thatsent the request.

4 Formal Verification

The verification of embedded distributed applications expressed inL f P covers a large number of properties.
The verification process reduces to computing the reachability set of the program, which is the set of all
possible states, and then evaluate assertions on the obtained set.

A data structure capable of representing large number of states must enable efficient operations such
as equality test, set-theoretic operations,L f P specific operations, as well as a compact representation in
memory.

We illustrate with a simple example a verification approach methodology based on the use ofDDD (Data
Decision Diagrams) for the symbolic computation of reachable states.

The first section introduces theDDD.
Section 2,3,4 successively describe the steps used for producing a verification program from anL f P

specification:

• deriving an adequate model for verification purpose,

• computation of the reachable states,

• evaluation of assertions on the reachability set.

These steps are illustrated with the verification of the simple client/server application.

4.1 The Data Decision Diagrams (DDD)

The purpose of this paper is not to provide a complete definition of theDDD structure. Theoretical aspects
of DDD are addressed in [3].

Data Decision Diagrams(DDDs) areconcisedata structures for representingfinite sets of assignment
sequencesof the form (e1 := x1;e2 := x2; · · · ;en := xn) whereei are variables andxi are values. When
an ordering on the variables is fixed and the variables are boolean,DDDs coincides with the well-know
Binary Decision Diagrams[1, 2]. If an ordering on the variables is the only assumption, DDDs are the
specialized version of theMulti-valued Decision Diagramsrepresenting characteristic function of sets. For
Data Decision Diagram, we assume no variable ordering and, even more, the same variable may occur many
times in an assignment sequence, allowing the representation of dynamic structures: for a stack variablea,
the sequence of assignments(a := x1;a := x2; · · · ;a := xn) may represent the stack contentx1x2 · · ·xn.

5

a

1

a

1 1

b

b

1 2

21 3

0

a

1

a

1

T

1 2

21

0

b

Figure 7: Two Data Decision Diagrams.

Traditionally, decision diagrams are often encoded as decision trees. Internal nodes are labeled with
variables, arcs with values (of the adequate type) and leaves with either0 or 1. Figure 7, left-hand side,
shows the decision tree for the setS= {(a := 1;a := 1),(a := 1;a := 2;b := 0),(a := 2;b := 3)} of as-
signment sequences. As usual,1-leaves stand for accepting terminators and0-leaves for non-accepting
terminators. Since there is no assumption on the cardinality of the variable domains, we consider0 as the
default value. Therefore0-leaves are not depicted in figure 7.

Unfortunately, any finite set of assignment sequences cannot be represented. Thus, we introduce a new
kind of leaf label:> for undefined. Intuitively,> represents any finite set of assignment sequences. Figure 7,
right-hand side, gives an approximation of the setS∪{(a := 2;a := 3)}. Indeed, an ambiguity is introduced
since after the assignmenta := 2, two assignments have to be represented:a := 3 andb := 3. These two
assignments affect two distinct variables so they can not berepresented, as two distinct arcs outgoing from
the same node cannot be labeled with the same value (in other words, non-determinism is not authorized in
the decision tree).

However, since our verification approach only considers well formed assignments sequences with no
compatibility issues regarding operations, we will consider> leafs as the result of an error in the state set
computation. We now give an overview ofDDDs, for a more formal and detailed presentation including
theoretical aspects regarding>, we refer the reader to [3].

4.1.1 Syntax and semantics ofDDDs

In the following,E denotes a set ofvariables, and for anye in E, Dom(e) represents thedomainof e.

Definition 1 (Data Decision Diagram) The setID of DDDs is inductively defined by d∈ ID if:

• d ∈ {0,1,>} or

• d = (e,α) with:

– e∈ E

– α : Dom(e) → ID, such that{x∈ Dom(e) |α(x) 6= 0} is finite.

We denote e
z

−→ d, theDDD (e,α) with α(z) = d andα(x) = 0 for all x 6= z.

Intuitively, aDDD can be seen as a tree.DDDs0, 1 and> are leaves, and aDDD of the form(e,α) is a
tree whose root is labeled with variablee, and with an outgoing arc labeled withx to a subtreeα(x) foreach
valuex∈ Dom(e). From a practical point of view, as non-accepting branches (i.e. branches ending with a
0-leaf) are not encoded, the “finite support” condition forα ensures thatDDDs can be implemented (even
when variables range over infinite domains).

The meaning[[d]] of a DDD d is a set of finite sets of assignment sequences. In particular, [[>]] is
the (infinite) set of all finite sets of asssignment sequences. When> does not appear in aDDD, theDDD
represents a unique finite set of assignment sequences (i.e.its meaning is a singleton). Hence, such aDDD
yields an exact (non approximate) representation and it is calledwell-defined.

The unique set in the meaning of a well-definedDDD d is the set of assignment sequences corresponding
to accepting branches (i.e. branches ending with a1-leaf) in the tree representation ofd. In particular, we
have[[0]] = { /0} and[[1]] = {{()}} (where() is the empty sequence of assignments).

6

Equivalence checking forDDDs is crucial whenDDDs are used to represent sets of states. Fortunately,
DDDs admitcanonical formsso that equivalence checking forDDDs in canonical form reduces to (syntactic)
equality.

Intuitively, from the tree representation point of view, the canonical form of aDDD is obtained by
replacing with0 all sub-trees that have only0-leaves and by sharing all subtrees which are equivalent. Two
DDDs in canonical form are equivalent if and only if they are equal. Moreover, everyDDD is equivalent to
aDDD in canonical form.

In the following,we only considerDDDs that are in canonical form.

4.1.2 Operations onDDDs

First, we generalize the usual set-theoretic operations –sum(union),product(intersection) anddifference–
to finite sets of assignment sequences expressed in terms ofDDDs. The crucial point of this generalization is
that allDDDs are not well-defined and furthermore that the result of an operation on two well-definedDDDs
is not necessarily well-defined. Thesum+, theproduct∗ and thedifference\ of two DDDs are inductively
defined in the following tables. In these tables, for any� ∈ {+,∗,\}, α1 �α2 stands for the mapping in
Dom(e1) → ID defined by(α1 �α2)(x) = α1(x)�α2(x) for all x∈ Dom(e1).

+ 0 1 > (e2,α2)

0 0 1 > (e2,α2)

1 1 1 > >

> > > > >

(e1,α1) (e1,α1) > >
(e1,α1 +α2) if e1 = e2

> if e1 6= e2

∗ 0 1 > (e2,α2)

0 ∨ (e1,α1) ≡ 0 0 0 0 0
1 0 1 > 0
> 0 > > >

(e1,α1) 0 0 >
(e1,α1 ∗α2) if e1 = e2

0 if e1 6= e2

\ 0 1 > (e2,α2)

0 0 0 0 0
1 1 0 > 1
> > > > >

(e1,α1) (e1,α1) (e1,α1) >
(e1,α1 \α2) if e1 = e2

(e1,α1) if e1 6= e2

These set-theoretic operations onDDDs actually produce the best possible approximation of the result.
More precisely, ifd andd′ are twoDDDs, then the sumd+d′ (resp. the productd∗d′, the differenced\d′)
is the “best defined”DDD whose meaning contains the set{S∪S′ |S∈ [[d]] andS′ ∈ [[d′]]} (resp. the set
{S∩S′ |S∈ [[d]], S′ ∈ [[d′]]}, the set{S\S′ |S∈ [[d]] andS′ ∈ [[d′]]}).

The concatenation operator defined below corresponds to theconcatenation of language theory.

d ·d′ =

0 if d = 0∨d′ = 0
d′ if d = 1
> if d = >∧d′ 6= 0
(e,α ·d′) if d = (e,α)

Notice that anyDDD may be defined using constants0, 1, >, the elementary concatenatione x
−→d and

operator+, as shown in the following example.

Example 1 Let dA be theDDD represented in left-hand side of Fig. 7, and dB the right-hand side one.

dA = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→b 3

−→1

dB = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→>

7

Let us now detail some computations:

dA +a 2
−→a 3

−→1 = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→

(

b 3
−→1+a 3

−→1
)

= a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→>

= dB
(

a 1
−→1∗a 2

−→1
)

∗> = 0∗> = 0 6= a 1
−→1∗

(

a 2
−→1∗>

)

= a 1
−→1∗> = >

dA \dB = a 2
−→

(

b 3
−→1\>

)

= a 2
−→>

dB ·c 4
−→1 = a 1

−→
(

a 1
−→c 4

−→1+a 2
−→b 0

−→c 4
−→1

)

+a 2
−→>

4.1.3 Homomorphisms onDDDs

In order to iteratively compute the reachability set of anL f P program, we need to translateL f P instructions
into DDD operations. These complex operations onDDDs are described by homomorphisms. Basically,
an homomorphism is any mappingΦ : ID → ID such thatΦ(0) = 0 and such thatΦ(d1)+ Φ(d2) is better
defined thanΦ(d1 + d2) for everyd1,d2 ∈ ID. The sum and the composition of two homomorphisms are
homomorphisms.

So far, we have at one’s disposal the homomorphismd ∗ Id which allows to select the sequences be-
longing to the givenDDD d; on the other hand we may also remove these given sequences, thanks to the
homomorphism Id\ d. The two other interesting homomorphisms Id· d andd · Id permit to concatenate
sequences on the left or on the right side. For instance, a widely used left concatenation consists in adding
a variable assignmente1 = x1 that is denotede1

x1−→Id. Of course, we may combine these homomorphisms
using the sum and the composition.

However, the expressive power of this homomorphism family is limited; for instance we cannot ex-
press a mapping which modifies the assignment of a given variable. A first step to allow user-defined
homomorphismΦ is to give the value ofΦ(1) and ofΦ(e x

−→d) for anye x
−→d. The key idea is to define

Φ(e,α) as∑x∈Dom(e) Φ(e x
−→α(x)) andΦ(>) = >. A sufficient condition forΦ being an homomorphism

is that the mappingsΦ(e,x) defined asΦ(e,x)(d) = Φ(e x
−→d) are themselves homomorphisms. For in-

stance,inc(e,x) = ex+1
−→Id and inc(1) = 1 defines the homomorphism which increments the value of the

first variable. A second step introduces induction in the description of the homomorphism. For instance,
one may generalize the increment operation to the homomorphism inc(e1), which increments the value of
the given variablee1. A possible approach is to setinc(e1)(e,x) = ex+1

−→Id whenevere= e1 and otherwise
inc(e1)(e,x) = e x

−→inc(e1). Indeed, if the first variable ise1, then the homomorphism increments the values
of the variable, otherwise the homomorphism is inductivelyapplied to the next variables.

The formal definition of inductive homomorphisms can be found in [3]. The two following examples
illustrate the usefulness of these homomorphisms to designnew operators onDDD. The first example for-
malizes the increment operation. The second example is a swap operation between two variables. It gives a
good idea of the techniques used to design homomorphisms forsome variants of Petri net analysis.

Example 2 This is the formal description of increment operation:

inc(e1)(e,x) =

{

e
x+1
−→ Id if e = e1

e
x

−→ inc(e1) otherwise
inc(e1)(1) = 1

Let us now detail the application of inc over a simpleDDD:

inc(b)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→inc(b)(b 2

−→c 3
−→d 4

−→1)

= a 1
−→b 3

−→Id(c 3
−→d 4

−→1)

= a 1
−→b 3

−→c 3
−→d 4

−→1

Example 3 The homomorphism swap(e1,e2) swaps the values of variables e1 and e2. It is designed using
three other kinds of homomorphisms: rename(e1), down(e1,x1), up(e1,x1). The homomorphism rename(e1)
renames the first variable into e1; down(e1,x1) sets the variable e1 to x1 and copies the old assignment of
e1 in the first position; up(e1,x1) puts in the second position the assignment e1 = x1.

8

swap(e1,e2)(e,x) =

rename(e1)◦down(e2,x) if e = e1
rename(e2)◦down(e1,x) if e = e2

e
x

−→ swap(e1,e2) otherwise
swap(e1,e2)(1) = >

rename(e1)(e,x) = e1
x

−→ Id
rename(e1)(1) = >

down(e1,x1)(e,x) =

{

e
x

−→ e
x1−→ Id if e = e1

up(e,x)◦down(e1,x1) otherwise
down(e1,x1)(1) = >

up(e1,x1)(e,x) = e
x

−→ e1
x1−→ Id

up(e1,x1)(1) = >

Let us now detail the application of swap over a simpleDDD which enlights the role of the inductive
homomorphisms:

swap(b,d)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→swap(b,d)(b 2

−→c 3
−→d 4

−→1)

= a 1
−→rename(b)◦down(d,2)(c 3

−→d 4
−→1)

= a 1
−→rename(b)◦up(c,3)◦down(d,2)(d 4

−→1)

= a 1
−→rename(b)◦up(c,3)(d 4

−→d 2
−→1)

= a 1
−→rename(b)(d 4

−→c 3
−→d 2

−→1)

= a 1
−→b 4

−→c 3
−→d 2

−→1

One may remark that swap(b,e)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→>.

Basically, theDDD data structure provides a compact encoding and a usage of memory similar to the
BDD (Binary Decision Diagram). The operations calls and their results are stored in a operation cache. Data
are stored in a unicity table based on a hash table. A canonical representation of the states allows for efficient
comparison of diagrams. Set-theoretic operations are defined and families of inductive homomorphisms
representing the operations of theL f P language can be user defined. TheDDD structure meets both the
requirement of efficiency and compacity.

4.2 Deriving an adequate model for verification purpose

The direct computation of reachable states from the initialmodel may be impossible in many cases. The
combinatory explosion can have different origins: inherent complexity of the problem, level of detail of the
model, size of the model, concurrency.

One main difficulty is to evaluate the complexity of the modeland identify modifications in order to
enable reachability set computation. Different models mayhave to be derived in accordance to the properties
to be verified.

We distinguish two ways of making changes to the model: quantitative and qualitative modifications.
The only purpose of these modification is to focus on the search of potential problems.

4.2.1 Quantitative alteration

The quantitatives modifications often lead to a redimensionning of data. Such modifications are easy to
achieve if the size of components are clearly visible in the design. The choice is guided by the effect of
the change on the complexity and by considering the symetries of the system. It may also permit to study
different phases in the execution of the model, for instanceinitialisation, termination.

Example 4 For instance, the simple model presented in this article depicts a client/server application com-
posed of 4 clients communicating with 2 servers. Each clientinvokes 5 times a service that increment of 1
a parameter value. The service is supported by both servers,any available server can execute the service.

9

If we call F(M, S, C) the number of possibles sequences of M messages by C clients to S server, a
preliminary complexity analysis gives:

F(M,1,C) =F (M,1,(C−1)) * (((C−1)∗M +1)M)
>F(M,1,(C−1))∗ (((C−1)∗M)M)
>F(M,1,(C−2))∗ (((C−2)∗M)M)∗ (((C−1)∗M)M)
> (((C−1)! ∗M)M)(c−1)

F(M, S, C) > SF(M,1,C)

In the case of our example, we reach a number of sequences F(6,2, 4)= 2ˆ1.03 e+28 that doesn’t even
considers the additional complexity from the model. It becomes necessary to modify the model in order to
compute the reachable states. We have been able to verify properties by reducing the size of the message
sequence in various ways.

However, resizing the application for verification purposemay not be an acceptable solution. We cur-
rently study other approaches using abstract representations of set of states by means ofDDD, [15].

4.2.2 Qualitative alteration

The qualitative changes include:

• simplification of the model that preserves information of the properties to be verified,

• addition of working hypothesis often linked to the domain ofapplication and restricting the set of
reachable states.

The simplification of the model often leads to the abstraction of some mechanisms. For instance, the
merging of two transitions when conditions allow it, will reduce the interleaving and thus, will reduce the
size of the reachability set. Such simplification may be acceptable when the validity of properties remain
unaffected.

A working hypothesis defines what is a consistent state and what is a discardable state. Applying a
working hypothesis on a set of states filters all inconsistent states with respect to the hypothesis.

Example 5 For instance, additional hypothesis have been added to the initial model of a train system [7].
This model was describing the interactions and the behaviorof a set of trains. The global state of the system
was composed of the state of each train. The model was quite complex (>100 transitions) and its parallelism
complicated the computation of the reachability set when dealing with a complex scenario. As time was not
explicitly part of the model, valid states computed by firingsequences in the model would never exist in
reality.

The hypothesis that has been added had the effect of discarding all global states that consider the
positions of trains at different dates. The application of this hypothesis had an immediate effect on state
computation and allowed the verification of complex situations.

4.3 Computation of the reachable states

The computation of the reachable states consists in encoding the state of anL f P program by means ofDDD
and implementing the homomorphisms that compute the new states corresponding to the firing of transitions
in the model.

4.3.1 Coding of a state

The state of anL f P specification is encoded into a DDD. Variables of the system are variables of the
DDD and their values are attached to the arcs. The coding of the state represents a mapping of variables
that can only be accessed sequentially by the inductive homomorphisms. Thus, the implementation of
homomorphisms strongly depends on the coding of the state. Three important issues have to be solved in
the encoding of anL f P state by means ofDDD as done in [15]. First, a canonical form must be defined
and conserved during the state computation. Second, the particular encoding of anL f P state must support
several dynamic aspects. And last, the encoding of the statemust guarantee the compatibility with theoretic-
set operators.

10

Type declaration of v DDD

Array v; v elt1
−→ v elt2

−→ ...

Set v; v size
−→ v elt1

−→ v elt2
−→ ...

VectorMultiSet v; v nbvect
−→ v vect1size1

−→ v vect1elt1
−→ v vect1elt2

−→ ...

Table 2: Data types representation by means ofDDD.

Canonicity is a fundamental requirement that allows reachable state computation. A canonical represen-
tation of the state allows to reduce the comparison betweenDDD to a pointer comparison (O(1)). Canonicity
is achieved by imposing construction constraints on all structures. The operations that manipulate the state
or any structure within the state produce states that respect the constraints. For instance, an absolute order
between elements of a set must be defined. Operations on a setsmust respect the order.

The coding of the state requires a coding of the data structures and associated operations supported by
the input language that respect the canonical form. In the case ofL f P, we need to implement the following
features:

• multi-sets of vectors,

• sets and multi-sets of scalars,

• instances of classes and media,

• variables at all scope (global, instance, local
and class),

• arrays,

• stacks.

Dynamicity causes the handling of states with varying size while respecting the constraints of canonicity
and operation compatibility.L f P provides dynamic features that are integrated in the state encoding:

• creation and destruction of instances,

• structures such as sets and multi-sets, FIFOs,

• method of function calls (stack).

By definition of theDDD structure, only one arc with a given value can be the output ofa node. Thus,
dynamicity can cause compatibility problems when addingDDD.

Example 6 The following example recalls a typical case of incompatibility. The addition of the 2DDD
produces an invalid result where the node ’a’ get 2 arcs valued ’V1’.

a v1
−→ a v3

−→ c v4
−→ ... + a v1

−→ c v2
−→ e v5

−→ ... = a v1
−→ >

We used prefixing techniques to constructDDD that are always compatible. For instance, a set is iden-
tified by one variable ’v’. A DDD representing the set ’v’ can be seen as an assignment sequence using the
same variable. Prefixing a set with a variable containing thesize of the set will enforce the compatibility
betweenDDD containing sets.

Typically, arrays and structures are coded using one variable. The semantic of a value (size, value,
...) depends on its position. The inductive homomorphisms use the position of the value to decode the
structures.

The table 2 summarizes the encoding of some common structures.

Now that we can code all basic structures by means ofDDD, we can show the encoding of the whole
state. At the top of the hierarchy the different components of anL f P program appear in the following order:

1. global variables,

2. global binders (binder all),

3. instances,

4. end of state (special marker).

Each component is aDDD that represents a structure or a single variable like, for example, a special
marker. The different fragments represented here are then assembled using the concatenation operator.

11

A canonical representation requires a particular orderingof object instances: the instances are grouped
by class and an order must be defined in such a way that order of the instance remains the same whatever is
the sequence of insertions. All object instances have the same structure shown below:

1. begin instance (special marker),

2. instance marker,

3. local media,

4. local binders,

5. instance variables,

6. program counter (PC),

7. stack (empty if not within a call),

8. end of instance marker.

The structure of the local media is simple:

1. media id (variableme),

2. message storage (multiset of vectors),

3. program counter (PC),

A block pushed on the stack is defined for each method. This block represents local data used by the
method call. The correspondingDDD has the following shape:

1. parameters,

2. local variables,

3. return state.

Example 7 The followingDDD is an example of a global state of the client/server application with 1 client
and 1 server. The variables prefixed with ’Glb’ are the globalvariables, then comes the global binders
and then the instances. In some cases, the use of symbols instead of values has been used to improve the
legibility. Variables of the media in the client instance are easily recognized with the prefix ’RPC’.

Glb.tmp1 0
−→ Glb.tmp2 0

−→ Glb.tmp3 0
−→ Glb.tmp4 0

−→

binder all in 0
−→ binder all out 0

−→

BeginOfInstanceserver.mk
−→

server.mk 0
−→ server.iv.discr 0

−→ server.pc none begin
−→

EndOfInstance 0
−→

BeginOfInstanceCLIENT.mk
−→

CLIENT.mk 0
−→

RPC.me 0
−→ RPC.locset 0

−→ RPC.loc.discr 1
−→ RPC.loc.id1 0

−→ RPC.loc.id2 0
−→

RPC.pc none begin
−→

CLIENT.locbinder 0
−→ CLIENT.locbinderout 0

−→
CLIENT.iv.i 0

−→ CLIENT.iv.id 1
−→

CLIENT.pc none begin
−→

EndOfInstance 0
−→

EndOfState 0
−→ 1

12

4.3.2 A set of basic Homomorphisms for LfP

A set of basic homomorphisms has been implemented to realizesimple operations of theL f P language.
The composition operation (◦) allows to combine the operations in order to design the often complex ho-
momorphism that represents the firing of a transition. A basic homomorphism takes as input a set of states
and produces a set of intermediate states.

We summarize in the table 4 the homomorphisms that deal with the functionning of the state machines
and the evaluation of boolean guards. Table 6 describes the homomorphisms that deal with communications
and media.

Typically, an homomorphism associated to a transition starts by checking if all boolean conditions are
satisfied, using theMarkFireablehomomorphism.MarkFireablecreates a new state where one instance
that satisfies the condition is marked. If multiple instances qualify, then a state will be created for each one
of them. All the other homomorphisms use the mark to identifythe instance to be processed.

When the computation of the new states obtained by the firing of a transition is finished, the homomor-
phismResetMarkconcludes the firing by reseting all markers from the new states.

State Machine Ho-
momorphisms

Parameters Description

MarkFireable Class, ExprG, Ex-
prL

Mark exactly one instance of an object ofClassif its state satisfies the global
boolean expressionExprG and the local boolean expressionExprL . Returns
an empty set of states if no instance qualifies.

AssignVar Class, Var, Expr Assigns to the variableVar the result of the evaluation of the expression
Expr . Variables in the expression and the assigned variable are assumed to
be in the scope of the marked instance of classClass.

ResetMark Class Reset the marker of a marked instance ofClass. This homomorphism con-
cludes any transition firing.

Goto Class, State Assign the program counter of the marked instance ofClasswith the new
automaton stateState.

ResetGlbTmp Initialize all temporaries to 0, in order to avoid duplicated states.
VarAdd Class, Var, Inc,

Modulo
Increments the variableVar in the scope of the marked instance ofClasswith
Inc andModulo parameters.

ProcessKill Class Destroy (remove from the state) the marked instance ofClass.
InsertInstance Class Insert an instance ofClassin the state.

Table 4: Homomorphisms related to state machines.

Communication Ho-
momorphism

Parameters Description

SendCallMeth Class, Binder, Tar-
get, Meth, NbParam,
Param List

Generate a message containing a remote call of procedureMeth by an in-
stance ofClass to Target and store it inBinder. ParametersParam List
are in the scope of the initiating instance. The binder can beeither multi set,
FIFO, local or global.

SendCallVMeth same as SendCall-
Meth, Var

Same asSendCallMeth, except that the method is the value of a variableVar
in the scope of the emitting instance.

ProcessReturn Class, Binder,
NbParam, Param.
List

Process a return message concluding a remote procedure call(RPC) initiated
by Classafter reception of the message inBinder. Assign values stored in
the message to the list of variables passed in the parameter list Param. List.

ReceiveMethCall Class, Binder, Locals,
NextState, Return-
State

Process the reception of an RPC message emitted by an instance ofClassand
stored inBinder. Save the context on the local stack of the receiving instance,
push local variablesLocals andReturnState, set program counter value to
NextState.

Select Class, Binder, Branch
Descr.

Process a branch (state with multiple output arcs) with boolean and message
guards in an instance ofClass. Messages are read fromBinder. A descrip-
tor Branch Descrspecifies the precondition and postcondition starting each
branch.

Binder2Media Binder Transfer messages from abinder to a media. The message contains the id of
the destination.Binder can be multi set or FIFO, local or global.

PurgeMedia Empty the Media
Media2Binder Binder Transfer messages from a Media to a Binder.Binder can be multi set, FIFO,

local or global.

Table 6: Homomorphisms related to Communications.

13

4.3.3 Coding of a transition

In most of the cases, each transition is associated to an homomorphism. For performance reason, an homo-
morphism is associated to states with multiple output branches and processes all transitions at the head of
each branch.

A transition homomorphism can be seen as the composition of aprecondition evaluation homomorphism
and a postcondition homomorphism.

The following fragment of code shows an example of a C++ function returning the composition of the
two homomorphisms that constitutes the firing of the transition. The operator◦ is implemented with the
C++ operator &. Operands of & appears in the inverse order of their application.

The parametergs is an instance of the class descriptor of the application. Itprovides the capabilities to
generate theDDD structure corresponding to the initial state of the system and ways to refer to variables
within theDDD structure.

GHom FIRE_SERVER_handle_request_succ(GenAppState &gs)
{
return

POST_SERVER_handle_request_succ(gs)&
TEST_SERVER_handle_request_succ(gs);

}

According to theL f P specification, the second transition of methodhandlerequestincrements the
value ofnumand terminates the method call (cf fig. 6(b)). For implementation purpose, name are given to
object. The transition is calledSERVERhandlerequestsuccand the state precondition of the transition is
calledSERVERhandlerequeststart.

The following code implements the precondition and postcondition homomorphisms for this transition.

TheTEST SERVERhandlerequestsucchomomorphism creates states with one marked instance of
classServerthat satisfies the transition precondition.

GHom TEST_SERVER_handle_request_succ(GenAppState &gs)
{
return

MarkFireable<GenCSServer>(
Cst(1), // no condition on global variables, always true
(Var(GenCSServer::PC) == // precondition is only testing the state
Cst(AllStates::SERVER_handle_request_start)));

}

ThePOSTSERVERhandlerequestsucchomomorphism realizes the action associated to the transi-
tion. The composition starts by incrementing the local variable num by the constant 1.

Then a return message from RPC is generated. This message carries a discriminant valuegs.Server. discr
that was set when the RPC was initiated. It contains the identifier of the initiator. The identifier of the mes-
sage isAllStates:: SERVER noneret handlerequestspecifies the type of the message. The message
contains only one parameter :num.

Note that the construction ofgs follows the same hierarchy as the originalL f P program. For example
gs.Server.handlerequest.numrefers to the local variable of methodhandlerequest. The value of the C++
variable contains the identifier of the corresponding variable in theDDD.

The Pop homomorphism restores the context at the end of the method call. The AssignVarhomo-
morphism reset the value of a local variable in order to limitate the generation of states. TheResetMark
homomorphism concludes the firing of the transition by reseting the instance marker.

GHom POST_SERVER_handle_request_succ(GenAppState &gs)
{

ResetMark<GenCSServer>()& // reset the mark concluding
AssignVar<GenCSServer>(gs.Server._discr, Cst(0))& // reset this local variable
Pop(gs.Server)& // exit from the method call
scSendCallMeth<GenCSServer>(true, gs.BinderAllId_out,

gs, gs.Server._discr,
AllStates::SERVER__none__ret_handle_request,
1, gs.Server.handle_request.num)&

Add<GenCSServer>(gs.Server.handle_request.num, 1, -1);
}

14

4.3.4 Reachable states computation

The simple computation of the reachable state space is an iterative process where all transitions are applied
during one iteration.

Begin
DDD CURRENT
Set of transitions TSET
Create the initial state CURRENT

DDD ACC=NULL
Repeat

DDD OLD_CURRENT=CURRENT
For each transition T in TSET:

CURRENT=CURRENT+T(CURRENT)
BOOL GotNew=(ACC+CURRENT!=ACC)
ACC=ACC+CURRENT
CURRENT=CURRENT-OLDCURRENT

Until (!GotNew)
Return ACC
End

A preliminary filtering allows to eliminate transitions that have no chance to be fired. In our case this
preliminary filtering is done by testing the simple condition on the program counter of each instance. A
static structure generated by the verification program gives the list of potentially firable transitions for each
value of the program counter of any instance. The list of potentially firable transition is updated on the fly
when new states are computed. This improvement made a noticable difference in performance.

A number of algorithms can be applied for the computation of the reachable states. Their study is
beyond the scope of this paper.

4.4 Verification of properties

The verification process handles generic properties of distributed systems such as liveness, search for dead-
locks, coverage, and specific properties tied to the system such as assertions on variables of the state. In
any case, the verification of a property consists in expressing it by means of an homomorphism that will be
applied to the set of reachable states.

4.4.1 Searching for deadlocks

If T1,.. Tnare the transitions of the system andHom T1,.. HomTn the corresponding homomorphisms.
Let Hom Sumbe the sumHom Sum=Hom T1 + Hom T2 + .. HomTn. Hom Sumwill return thenull
homomorphism if it applies to a blocking state.

We reproduce the output generated by the verification program in the computation of blocking states of
the system with 2 servers, 2 clients sending 2 messages. To simplify the reading, theDDD containing the
state of the system is displayed by putting between parenthesis the value associated to a variable. Comments
have been added to improve legibility. In the following, only one instance of each class is shown to save
space.

[TERMINALS =
// global variables:
Glb.tmp1(0) Glb.tmp2(0) Glb.tmp3(0) Glb.tmp4(0)

//global binders:
binder_all_in(0) binder_all_out(0)

// instances
__BeginOfInstance(server.mk)

// marker
server.mk(0)

//instance variables & program counter
server.iv._discr(0) pc=server.pc(_none_begin)
__EndOfInstance(0)

... // others instance of server

15

__BeginOfInstance(CLIENT.mk)
CLIENT.mk(0)

//media of client, instance variables
RPC.me(0) RPC.loc_set(0) RPC.loc.discr(1) RPC.loc.id1(1) RPC.loc.id2(1)
pc=RPC.pc(_none_begin)

// client local binders
CLIENT.locbinder(0) CLIENT.locbinder_out(0)

//client instance variables
CLIENT.iv.i(2) CLIENT.iv.id(1)

pc=CLIENT.pc(_none_end)
__EndOfInstance(0)

... // others instance of client

__EndOfState(0)]

Only one state has been found with the following characteristics:

• no communication are pending

• all servers are ready to process a request

• all clients are terminated

So the only blocking state is a terminaison state as it is defined in the model. This model has no invalid
deadlocks.

4.4.2 Coverage test

A routine showing a compact view of the state space shows all possible values assigned to all variables
composing the state. A look at the program counter of all instances shows that all the states have been
explored. Additional states may be added to the model to dealwith transitions sharing the same input and
output state. This test can also be useful to:

• estimate or determine the size of the communication buffers(binders),

• define the domain of variables

In this example we only show the results for one instance of each class.

[COVERAGE =

Glb.tmp1(0) Glb.tmp2(0) Glb.tmp3(0) Glb.tmp4(0)

binder_all_in(0 1 2) binder_all_out(0 1 2)
__BeginOfInstance(536870922)
server.mk(0)
server.iv._discr(0 1 2)
server.pc(_none_begin handle_request_begin handle_request_start)
__EndOfInstance(0)

...

__BeginOfInstance(536870931)
CLIENT.mk(0)
RPC.me(0) RPC.loc.discr(0 1) RPC.loc.id1(0 1) RPC.loc.id2(0 1)
RPC.pc(_none_begin _none_p1 _none_p2 _none_p3)

CLIENT.locbinder(0 1) CLIENT.locbinder_out(0 1)

CLIENT.iv.i(0 1 2) CLIENT.iv.id(1)

16

CLIENT.pc(_none_begin _none_start _none_process _none__wait_handler_request _none_end),
__EndOfInstance(0)

...

__EndOfState(0)
]

4.4.3 Assertions on variables

An assertion on a variable can be easily translated into an homomorphism that evaluates the boolean expres-
sion corresponding to the negation of the assertion. This homomorphism is applied on the set of reachable
states and should return the empty set, if the original assertion is satisfied.

Example 8 The computation of states of the system with 2 servers, 2 clients sending 2 messages has been
performed.

We now would like to show that the set of states that satisfy the negation of the expression ((Client.PC=
client noneend) ⇒ (client.i = 2)) is empty.

The computation of such a set can be easily done by building the homomorphism that will check the ex-
istence of such states. We directly reuse the MarkFireable homomorphism that allows for checking boolean
expressions on states.

GHom CheckAssertTerm(GenAppState &gs){
return

MarkFireable<GenCSClient>(
Cst(1), // no condition on global variables, always true

(Var(GenCSClient::PC) == Cst(AllStates::CLIENT__none_end))&&
(Var(gs.Client.i)!!=2)
);

}

5 conclusion and future work

In this paper, we have presented how we could handle the modelchecking ofL f P, a high-level specification
language. The main problem raised in this study resides in dynamic aspects proposed inL f P: creation of
processes, RPC mechanisms, addressing, etc.

DDD were successfully used for the analysis of Petri nets [3] andwere also experimented successfully
for L f P. To achieve model checking, a basic set of homomorphisms hasbeen defined and implemented
to enable the computation of the reachability set of anL f P specification. An execution environment sup-
porting basic debugging capabilities and the computation of the reachable set of anL f P model has been
implemented. We have started developping a code generator that translates an XML file containing theL f P
program and generates C++ files that will be linked to the execution environment.

The efficiency of theDDD operations and the compacity of the structure allowed the computation of
large reachability sets [7] of complexL f P models. We summarized the main technical difficulties in the
representation of aL f P program by means ofDDD: canonical representation of the state, support for dy-
namicity, diversity and complexity of the mechanisms to implement.

We also address complexity issues that may be solved by modification of the model. The derivation of
models for specific verification purposes is currently mostly supported by the user expertise. We believe
that an abstract representation of the state may help solving these issues [15].

Compiler optimization techniques will be developped to optimize the construction of homomorphisms.
A language for the specification of properties needs to be developped as well as associated translation tools
to generate the homomorphisms.

The development of such tools will provide a wide access to the efficiency of theDDD structure and will
free the user from the tedious manual implementation of homomorphisms.

17

References

[1] B. Akers. Binary decision diagrams.IEEE Transactions on Computers, 27(6):509–516, 1978.

[2] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a BDD Package. In27th
ACM/IEEE Design Automation Conference, pages 40–45, Orlando, Florida, June 1990. ACM/IEEE,
IEEE Computer Society Press.

[3] J. M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P. A. Wacrenier. Data decision
diagram for Petri nets analysis. InProc. of ICATPN 2002, volume 2360 ofLNCS, pages 101–120.
Springer Verlag, june 2002.

[4] F. Gilliers, F. Kordon, and D. Regep. Proposal for a ModelBased Development of Distributed Embed-
ded Systems. In2002 Monterey Workshop : Radical Innovations of Software and Systems Engineering
in the Future. Springer Verlag, 2002.

[5] F. Gilliers, F. Kordon, and J-P. Velu. Generation of distributed programs in their target execution
environment. InProceedings of the 15th International Workshop on Rapid System Prototyping, pages
90–97. IEEE Computer Society, 2004.

[6] ISO. Information Technology – Programming Languages – Ada. ISO, February 1995. ISO/IEC/ANSI
8652:1995.

[7] F. Kordon and M. Lemoine, editors.Formal Methods for Embedded Distributed Systems: How to
Master the Complexity. Kluwer Academic, 2004. ISBN:1-4020-7997-4.

[8] F Kordon and Luqi. An Introduction to Rapid System Prototyping. IEEE Trans. Softw. Eng.,
28(9):817–821, 2002.

[9] F. Kordon, I. Mounier, E. Paviot-Adet, and E. Regep. Formal verification of embedded distributed
systems in a prototyping approach. InMonterey Workshop 2001: on Engineering Automation for
Software Intensive System Integration, June 2001.

[10] N. Leveson. Software engineering: Stretching the limits of complexity.Communications of the ACM,
40(2):129–131, 1997.

[11] Luqi and J. Goguen. Formal methods: Promises and problems. IEEE Software, 14(1):73–85, January
/ February 1997.

[12] OMG. Model Driven Architecture (MDA), Document numberormsc/2001-07-01. Technical report,
OMG, 2001.

[13] D. Regep and F. Kordon. LfP: A Specification Language forRapid Prototyping of Concurrent Systems.
In Proceedings of the 12th International Workshop on Rapid System Prototyping, pages 90–97. IEEE
Computer Society, 2001.

[14] D. Regep, Y. Thierry-Mieg, and F. Kordon. Modélisation et vérification de systèmes répartis: une
approche intégrée avec LfP. InProceedings of AFADL’03, January 2003.

[15] Y. Thierry-Mieg, J-M. Ilié, and D. Poitrenaud. A symbolic symbolic state space representation. In
Proceedings of the 24th IFIP WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE’04), Madrid, Spain, September 2004. Springer Verlag. To appear.

18

