
Synthesizing Executable Models of Object Oriented Architectures

Lee W. Wagenhals, Sajjad Haider, and Alexander H. Levis
Systems Architecture Laboratory, C3I Center, Mail Stop 4B5,

George Mason University, Fairfax, VA 22030-4444, USA
{lwagenha, shaider1, alevis} @ gmu.edu

Abstract

The United States Department of Defense (DoD) has mandated
the development of Command, Control, Communications
Computers, Intelligence, Surveillance, and Reconnaissance
(C4ISR) Architectures to support the acquisition of systems that
are interoperable and will meet the needs of military coalitions.
This paper provides a general description of an architecting
process based on the object oriented Unified Modeling
Language (UML) that includes three phases: analysis, synthesis,
and evaluation. It then provides a rationale for style constraints
on the use of UML artifacts for representing DoD C4ISR
architectures. Finally the paper describes both a mapping
between the UML artifacts and an executable model based on
Colored Petri nets that can be used for logical, behavioral, and
performance evaluation of the architecture. A procedure for the
conversion is also provided.

Keywords: C4ISR Architectures, Object Orientation, UML,
Colored Petri Nets

1 Introduction
Over the past decade, military organizations have
mandated the use of architectures to address increased
uncertainty about requirements, rapid changes in
technology, changes in organizational structures, and a
widening spectrum of missions and operations. Today,
military organizations must respond to a variety of
situations by quickly assembling and organizing
coalitions from different components. These
organizations must have the agility and flexibility to
adapt to rapidly changing circumstances and bring about
desired outcomes. This “plug and play” concept requires
an unprecedented level of interoperability in the
information systems that support the various units of a
coalition. To achieve this flexibility, the US Department
of Defense has looked to information architectures to
provide current or future descriptions of various
“domains” composed of components and their
interconnections, actions or activities those components
perform, and rules or constraints for those activities. One
of the main areas of emphasis is the information
exchange that will take place between elements of the
architecture. The department has published the C4ISR
Architecture Framework [1997] that provides common
definitions, data, and references, and describes a set of
products that comprise three views of an architecture.

While this framework provides a standardized format for
describing architectures, it does not provide a procedure
for developing the artifacts that are used in the
description. The lack of a definitive process has posed a
challenge to those who are responsible for developing
architectures that are compliant with the framework.
Indeed, the issue of how to implement to the framework
has been an area of research by the authors.

Responding to this requirement, two fundamental
approaches have been used to implement the C4ISR
Architecture Framework: structured analysis and object
orientation [Levis and Wagenhals, 2000; Wagenhals, et
al., 2000]. Which ever approach is used, the fundamental
goals in developing the architectures are (1) to obtain a
description of a C4ISR architecture, based on three
architecture views, that answers the users’ and operators’
(warfighters’) questions and supports the acquisition
community’s needs, (2) to develop an implementable
process that uses current knowledge and tools to produce
the desired description, (3) to develop an executable
model that enables behavioral analysis and performance
evaluation, and (4) to be able to carry out that evaluation.
To support these goals, architecture design processes
have been partitioned into three phases: analysis,
synthesis, and evaluation. The analysis phases involves
the development of static, dynamic, and implementation
representations of the architecture. Note that these
representations are static views, they contain a great deal
of descriptive material including descriptions of dynamic
behavior, but they cannot execute and generate dynamic
behavior. In the synthesis phase, the elements of
information developed in the analysis phase are converted
to an executable model. These models are capability of
generating dynamic behavior. In the evaluation phase, the
executable model is used to verify the logical, behavioral,
and performance aspects of the architecture and compare
them with user requirements.

In order to use Object Orientation for architectures,
research has been undertaken to address three problems;
(1) can an Object Oriented process be developed and used
to design an architecture, (2) what is the set of UML
[Object Modeling Group, 1999] diagrams that should be
used to represent a complete architecture for information
or C4ISR systems, and (3) can a process for converting
the object oriented representation of an architecture to an
executable model be developed, thus formalizing the
synthesis phase of the overall process? In Bienvenu et al.,
[2000] the artifacts of object orientation and their use in
designing C4ISR architectures conformant to the C4ISR
Architecture Framework, version 2.0, were discussed.
While that work established the fact that an architecture
could be developed using object orientation and that the
resulting design could be mapped to the requisite C4ISR

Copyright 2002, Australian Computer Society, Inc. This paper
appeared at the Workshop on Formal Methods Applied to
Defence Systems, Adelaide, Australia, June 2002. Conferences
in Research and Practice in Information Technology, Vol. 12.
L.M. Kristensen and J. Billington, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

Figure 1. Top Level View of the Architecting Process.

EVALUATION
PHASE

MOPs, MOEs EXECUTABLE MODEL
INTEGRATED
DICTIONARY

CLASS DIAGRAM

BEHAVIORAL DIAGRAMS
(including Rule Model)

ORGANIZATION
MODEL

USE CASE ANALYSIS

MISSION

PHYSICAL
ARCHITECTURE

OPERATIONAL
CONCEPT

LOGICAL
ARCHITECTURE

products (problems 1 and 2), it stopped short of
addressing problem 3. This paper introduces a new
formulation of the architecture design problem that leads
to an executable model (problem 3).

This paper is structured as follows. Section 2 describes
the basic UML constructs that are used to render an
architecture and describes a process for creating an
architecture that is composed of those constructs. As part
of that process, a specific style is imposed so that the
conversion of the architecture to the executable model
can be readily accomplished. Section 3 describes the
mapping, and thus a conversion process from the UML
artifacts used in the architecture to the executable model.
In this case, the Colored Petri net (CP-net) [Jensen, 1997]
formulism is used for the executable. Finally, Section 4
provides the conclusions and directions for further
research. The authors assume that the reader has some
familiarity with the main UML artifacts, and a basic
understanding of colored Petri nets, in particular the
elements of their graphical representation.

2 Object Orientation for Architecting
The Uniform Modeling Language (UML) has become the
standard for visualizing, specifying, constructing, and
documenting systems. It is a modeling language that has a
vocabulary (symbols), semantics, and syntax. Within the
language, there are two classes of modeling constructs or
views, called diagrams. The structural diagrams, i.e.
class, object, component, and deployment diagrams,
document the static aspects of the system being modeled.
Behavioral diagrams, i.e. activity, collaboration,
sequence, state chart, and use case diagrams portray the
dynamic behavior of the system. When used to specify a
system, each of these diagrams represents a specific
aspect of the same system.

UML is a rich language that can be used to represent
architectures of information systems, including C4ISR
systems, using multiple views. Two problems must be
addressed: what is the necessary and sufficient set of
UML artifacts to represent an architecture in the analysis

phase and what is the process by which these views will
be created. The fact that we want to be able to synthesize
an executable model in the form of a Colored Petri (CP)
net helps answer the first question because the UML
views will need to contain all of the information
necessary to full specify the CP-net. The conversion
process requires that all of the artifacts are consistent with
one another. This means that the process must include a
formal procedure for model concordance.

Figure 1 shows a high level depiction of the process. One
starts with a mission, which, in the context of C4ISR
architectures, is usually is a military mission, function, or
task. From this mission, an operational concept is created
that describes how the mission will be carried out. The
operational concept then drives the architecture design
process. The architecture can be viewed as having two
perspectives, a logical perspective and a physical
perspective. The logical perspective details the activities
and information flows that will accomplish the
operational concept. The physical perspective describes
the physical nodes and links that will be instantiated to
carry out the activities of the logical perspective. It may
also involve a description of the organizational structure
that will be associated with the physical systems and the
roles of the elements of the organization that will be
involved in carrying out the activities. When using UML,
Use Cases offer a means for refining the operational
concept and can act as a bridge between it and the logical
perspective. We call the logical perspective the logical
architecture view. Elements of the logical architecture can
be allocated to the elements of the physical architecture to
complete the architecture design. The two-headed arrow
between the logical and the physical perspectives in
Figure 1 illustrates this approach. From a UML
perspective, the logical architecture is composed of both
static structural diagrams including class and object
diagrams, and behavioral representation, including
activity, sequence, collaboration, and state chart
diagrams. The physical architecture can be represented
using either class diagrams or implementation diagrams.

Figure 2. UML based architecture design process

2

1

1

DEVELOP USE
CASES AND

THEIR
DIAGRAMS

FORMULATE
OPERATIONAL

CONCEPT

0
ALL

DEVELOP
AND

MAINTAIN
INTEGRATED
DICTIONARY

SYNTHESIZE
EXECUTABLE

MODEL

4

DEVELOP
BEHAVIORAL
DIAGRAMS &
RULE MODEL

2

DEVELOP
CLASS

DIAGRAMS

GATHER DOMAIN
INFORMATION

ENSURE
CONCORDANCE

3

PHYSICAL

LOGICAL

STAGE 4 STAGE 3 STAGE 2 STAGE 1 STAGE 0

DEVELOP

COMPONENT
DIAGRAMS

DEVELOP
DEPLOYMENT

DIAGRAM

3

DESCRIBE PHYSICAL
ARCHITECTURE

0

DEPICT
ORGANIZATIONAL

STRUCTUREs

0

The development of the Logical, Physical, and
Organizational models constitutes the analysis phase of
the architecting process. Once completed, it must be
possible to synthesize the executable model from these
artifacts. This constitutes the synthesis phase of the
architecting process. Once the executable has been
constructed and tested, it can be used to support the
evaluation phase. In this phase, the executable model is
used compare the behavior of the architecture against user
requirements and to generate data to compute measures of
performance (MOPs) and measures of effectiveness
(MOEs). It should be noted that it is possible to develop
an executable model from the information contained in
the logical architecture view only. Such an executable can
be used to evaluate logical and behavioral aspects of the
architecture. .

A five stage process has been developed that uses the
UML and its associated diagrams to design and represent
architectures of C4ISR systems (Figure 2). In stage 0, all
of the domain information needed to design the
architecture is collected. This includes descriptions of the
operational concept, functions, and tactics, techniques,
and procedures as well as physical systems and
organizational structures that will be included in the
architecture. In the second stage, the operational concept
is formulated and depicted as an operational concept
graphic. In addition, use cases and their diagrams are
created to describe scenarios between users and the
system for which the architecture is being developed. A
scenario is a sequence of interactions between a user and
a system. Once the required operation of the system has
been defined, the logical architecture for carrying out the
use cases is designed in stage 2. The architect decides
what activities and information flows will accomplish the
operational concept as defined by each Use Case,
allocates those activities to classes, determines the
attributes that each class needs to carry out its activities

(operations), and develops the rules for each operation.
Once the Logical Architecture View is completed, the
Architect can show how the logical construct will be
allocated to the physical aspects of the design in stage 3.
There are at least two ways to do this. In one method, the
architect can use component diagrams that reflect the
actual components that will reside inside the physical
nodes of the system and deployment diagrams that reflect
the allocation of the components to physical nodes.
Alternatively, the architect can use class diagrams to
represent physical system nodes, messages, and
components.

Throughout the stages, the architect must develop and
maintain an integrated dictionary, a single repository of
definitions and descriptions of all elements of every
diagram in the architecture. In addition, the architect must
ensure that consistency is maintained between all of the
views. We call this maintaining concordance, and it is
crucial throughout this process. Because of the general
nature of their use, modern tools that support object
oriented analysis do not support concordance in the
manner required to design an architecture. However,
tool vendors` e.g. Popkin Software, Inc. and Ptech, Inc.
are responding to the need by providing special
extensions to their basic tools that support the C4ISR
Architecture Framework.

The concordances concepts are reflected in Figure 3. It
shows activity, sequence and collaboration diagrams as
well as a class diagram. The activities in the activity
diagram use the same name as the equivalent operations
in the collaboration diagram. The arrows in the activity
diagram correspond to messages or events associated
with links in the collaboration diagram. The message or
event descriptions represent the operation being called by
an object to include any parameters that are contained in
the message. These messages descriptions are the same
on both the collaboration and the sequence diagrams.

Finally, the Class diagram reflects a composite of the
collaboration diagrams plus other collaboration diagrams
not shown.

Since it is a requirement that we be able to synthesize an
executable model from the static views developed using
UML, it was important to consider both the requirements
of the architecture design and the target executable
modeling formalism, CP-nets. CP-nets are not inherently
object oriented. They have a fixed structure that does not
change dynamically. On the other hand, objects can have
relatively short life times, that is, they can be created and
destroyed during the course of a scenario. The challenge
is how to represent the types of objects that come and go
in at CP-net. Of course, CP-nets have tokens that can be
created and destroyed within the structure. Thus, one
approach is to use tokens to represent objects. It is easy
to understand that tokens can represent the attributes of
objects. However, representing the operations in a
manner that supports the visualization of objects is
difficult.

C4ISR architectures are composed of a combination of
fixed structures and objects that have short life cycles.
The fixed structures are related to the physical
components of the architecture. They include operational
nodes and elements and system nodes, systems, system
components, and communications links. Because of the
emphasis on interoperability, C4ISR Architectures
emphasize the information exchange requirements (IERs)
between the static elements of the architecture. These
IERs represent messages and data. This understanding
induces the concept that the architecture is composed of
fixed, long-term objects (the nodes and links) and the
short term, transitory objects, the messages and data.

Thus the fundamental concept for the conversion is that
fixed elements of the architecture will be represented by
the fixed structure of the CP-net (transition, places, and
arcs), and the transitory messages and data will be
represented by tokens.

Activity A1

Object 1 Object 2

Activity Diagram

Activity O3

Activity O2

Activity A4

Object 1

Operation-O2

Object 2

Operation-O3

1. OperationO2()

Collaboration Diagram

3. Activity-A4()

2. OperationO3()

≡
Sequence Diagram

Class 1

Operation-O2
Requests

Class Diagram

Class 2

Operation-O3

Class 3

Operation-O5

Calls

Responds

Object 1 Object 2

OperationO2()

OperationO3()

ActivityA4()

Figure 3. Concordance between activity, collaboration, sequence, and class diagrams.

To implement this fundamental concept for the
conversion of the UML artifacts to the CP-net executable
model, two style restrictions have been incorporated in
the analysis process. In the first style constraint, the
architect must partition the classes into those that
represent the fixed structure and those that represent the
transient messages and data. Messages will be passed
between the fixed objects. Since messages or data will be
represented by tokens in the CP-net, messages and data
will be represented as classes that have only attributes.
Thus, the messages or events that are described in the
collaboration and sequence diagrams are rendered as
association classes on the class diagrams between classes
that represent the fixed classes of the architecture. Figure
4 shows a fragment of an activity diagram and the
associated fragment of a class diagram. This architecture,
that represents a billing system for a gasoline station1, has
two fixed objects: a pump and a gas station. Messages are
exchanged between these two objects based on the
operations of each. The activity diagram shows that a
message is passed from an activity that is performed by a
Pump object operation, ProvideSalesInfo, to an activity
performed by a Gas_Station object operation,
ComputeCostOfSale. The content of the message, which

1 An example of a gas station credit card billing system is used in this
paper rather than a C4ISR system because its operational concept is will
understood by a general audience.

Figure 5. Aggregation association to implement style
constraint.

GradeID: int
Price: int

Gas_Price

FP_ID: int
Cost: int

Accounts

ComputeCostOfSale
UpdateLedger

Gas Station

GradeID: int
Price: int
FP_ID: int
Cost: int

ComputeCostOfSale
UpdateLedger

Gas Station Sequence Diagram

will be specified in the collaboration diagram, is a triple,
(FP_ID, Grade, Amount). The corresponding class
diagram has a Pump class and a Gas_Station class, each
with assigned operations including the two shown in the
activity diagram fragment. The message is manifested as
an association class between the Pump and Gas_Station
classes and has the three attributes that constitute the
content of the message. As we will see in section 3, this
will simplify the conversion of the information in the
class diagram to the CP-net structure.

In the second style constraint, all non-association classes,
which represent the fix elements of the architecture, will
be converted into sets of classes that contain either
operations or attributes, but not both. This can be done
using the aggregation form of association. Any non-
association class that has both operations and attributes is
converted to a “parent” object that only contains the
operations and one or more “child” objects that contain
the attributes and have the aggregation association with
the parent object. Figure 5 illustrates this conversion.

3 Synthesis of the CP-net from the UML based
architecture

An algorithm has been formulated to facilitate the
conversion of the Object Oriented artifacts into the
executable model. The algorithm requires a specific style,
explained in Section 2, which restricts the construction of
those artifacts. It is essential that all concordance errors
between various artifacts be corrected before the
conversion to the executable model. A discrete event
dynamical system model is appropriate because it allows
the modeling of concurrent, asynchronous, event driven
systems, which characterize C4ISR systems. We have
adopted Colored Petri Nets [Jensen, 1992] for

representing the executable model because they can be
used for mathematical analysis as well as for simulations.

Class Diagram

Figure 4 Association classes specify messages
or events.

FP_ID: int
Grade: int
Amount: int

SalesInfo

GSOperation 1
ComputeCostOfSale
GSOperation n

Gas Station

POperation 1
ProvideSalesInfo
POperation n

Pump

(FP_ID, Grade, Amount)

Gas Station pump

ComputeCostOfSale

ProvideSalesInfo

 Several approaches can be used to generate the
executable model. For example, executable models can
be derived from various behavioral diagrams (activity
diagrams, state chart diagrams, etc.) or structural
diagrams (class, object, implementation diagram, etc.).
Our approach requires information from several
concordant diagrams. We have chosen to use the class
diagram to provide the basic structure for the conversion
to a CP-net because it is the most general description of
the object oriented design of the architecture. We assume
the class diagram has been derived using the procedure
described in Section 2 so that it contains information
derived from activity, collaboration, and sequence
diagrams. The conversion requires information from
activity diagrams and rule models that have been
specified for each operation of the classes.

In constructing the CP-net we need to create an
unambiguous mapping between the elements of the
various UML diagrams and the elements of the CP-net.
This includes structural elements, i.e places, transition,
input and output arcs, and logical elements, including
color sets and variables in the global declaration node, the
associations of color sets with places, arc inscriptions,
guard functions, and code segments. Finally we need to
determine the initial markings of the CP-net. We will
illustrate the mapping with a series of figures. Figure 6
summarizes the algorithm.

Figures 7 through 10 will be used to illustrate algorithm
for converting the class diagram to the CP-net using the
architecture of the gasoline station. Figure 7 shows a
fragment of a class diagram that has been created using
the style constraints described in Section 2. Note that
each class has either attributes or operations, but not both.
The association classes present the messages that will be
passed from one operation to another. The attributes of
non-association classes have been captured in classes that
have the aggregation association with the class that has
the operations. In this example, a class called Pump will
generate SaleInfo messages that are send to the
ComputeCostofSale operation of an instance of the
Gas_Station class. The ComputeCostOfSale operation
will use the data contained in the SaleInfo message and
data contained in the GasPrice class to generate an
Amount_Pumped message.

Global Declaration Node
color FP_ID = int;
color Grade_ID = int;
color Amount = int;
color Price = int;
color SalesInfo = product FP_ID * Grade * Amount ;
color Gas_Price = product Grade_ID * Price ;
color Amount_Pumped = product FP_ID * Amount ;
var fpic : FP_ID ;
var gid : Grade_ID ;
var amt : Amount ;
var prc : Price ;
…

Figure 7. Fragment of Class Diagram.

Grade_ID: int
Price: int

Gas_Price

ComputeCostOfSale
UpdateLedger

Gas Station

FP_ID: int
Grade_ID: int
Amount: int

SalesInfo

POperation 1
ProvideSalesInfo
POperation n

Pump

Amount_Pumped

Grade_ID: int
Amount: int

ss

m.

1. Construct the Global Declaration Node using
the attributes of all of the classes in the cla
diagram.

2. Construct the hierarchical CP net:
2.1. Create a substitution transition for each

interacting classes in the class diagram
2.2. Create a place for each association and

aggregated classes. Assign the appropriate
colorset.

2.3. Create arcs between the substitution
transitions and the places using the activity
diagram. There should be a one-to-one
matching between the numbers of
associations in the class diagram and the
number of places between transitions in
the executable diagra

2.4. Create a sub-page for each substitution
transition.

2.4.1. Create a transition for each
operation.

2.4.2. Assign the Input, Output, and I/O
ports places

2.4.3. Create the Arcs based on the
activity diagram

2.4.4. Add Arc inscriptions, guard
functions, or code segments
derived from the rules associated
with each operation.

2.5. Specify initial markings for each place that
represents an aggregate class.

We begin the algorithm with step 1 by constructing the
Global Declaration Node. The Global Declaration Node
is constructed using information in the class diagram.
“Atomic” color sets are defined for the different attributes
of the classes in the class diagram. Each color set should
have the same name as the attribute it represents. The
domain of the attribute is specified in the class diagram
and is used to define each color set. Variables are defined
for each atomic color set. Color sets for the classes are
defined as products of atomic color sets. ML records also
could be used. These color sets are given the same name
as the classes they represent and the color set region of
each place is selected from the appropriate color set in the
global declaration node.

Figure 8 illustrates step 1 of the algorithm, the generation
of the Global Declaration node from a fragment of a class
diagram of Figure 7. The class diagram shows two
classes, a Pump and a Gas_Station class. The association
class SalesInfo represents message that are passed from a
Pump object to a Gas_Station object. The SalesInfo class
has three attritubes, each of type integer: FP_ID,
Grade_ID, and Amount. In the corresponding Global
Declaration Node, each attribute is declared. In this
example the color set SalesInfo is declared as a product of
the three attribute color sets that comprise the SalesInfo
class. Variables are also declared for the color sets. In a
similar fashion products of the atomic color sets are used

to specify the color sets for the attributes of the non-
association classes (which will correspond to tokens that
represent the value of the attributes of the object with
which the class is associated). In figure 8 the color set
Gas_Price is declared as a product of Grade_ID and
Price.

Figure 6. Procedure for synthesizing CP net
from a UML based Architecture.

Figure 8. Fragment of Global Declaration Node.

In step 2 of the algorithm, a hierarchical structure is
developed for the CP-net. The top-level page corresponds
to the class diagram. In step 2.1, on the top-level diagram,
substitution transitions are created for each (non
association) class that is not the “part-of” aspect of an
aggregation relationship. These are the “parent” classes
that contain only operations. In step 2.2 the classes that
are the “part-of” aspect (the ones with only attributes)
become port places on the top page and are connected to
the substitution transition that represents the parent class
with an input/output port and socket. Their color sets will
be defined from the set of attributes in the class. Places
are created on the top-level page for each association
class. Each is given the appropriate color set that was
specified in the global declaration node for the
association class. In step 2.3 arcs are created on the top-
level page.

Figure 9 illustrates the conversion of the fragment of the
class diagram in Figure 7 to the CP net structure. In step
2.1 substitution transitions are created to represent the
Pump and Gas_Station classes. These are the classes that

have operations. In step 2.2, places are created for each
association class (SalesInfo and Amount_Pumped). A
place is created for the Gas_Price class that is “part-of”
the Gas_Station. This place will carry a token that
represents the values of the attributes of the Gas_Station.
In step 2.3 arcs are created. The direction of each arc
connecting a place and a transition is determined from the
activity diagram (see Figure 4). Arcs are created from the
Pump substitution transition to the SalesInfo place
indicating the Pump generates (sends) a SalesInfo
message (object). This message goes to the Gas_Station
so an arc is created from the SalesInfo place to the
Gas_Station substitution transition. Input/Output arcs are
used between the non-association Gas_Price place and
the corresponding Gas_Station substitution transition to
allow the Gas_Station transition to access and update the
value of its attributes.

In step 2.4, a sub-page is created for each substitution
transition. Each operation for a class is represented by a
transition that is placed on the sub-page of the
substitution transition for the class to which it belongs.
The places that represent the association classes and the
classes with no operations that interact with the class are
also placed on the sub-page of the substitution transition.
They become input or output port places on the pages that
represent the substitution transitions.

The direction of the arcs may be determined from the
activity diagram or the collaboration diagrams, if they are
not explicitly indicated on the class diagram. On the sub-
pages of the substitution transitions, the activity diagram
is used to determine how each port place is connected to
the transitions that represent the operations of the class.
Finally, the rule model [Levis and Wagenhals, 2002] is
used to specify the arc inscriptions, guard functions, or
code segments. These rules have the structure: if (set of
input conditions) then (set of output conditions), else
(set of output conditions).

Figure 10 shows a fragment of the Gas_Station sub-page
featuring the transition that represents the

ComputeCostOfSale operation. The activity diagram
provided the information needed to connect the input and
output port places to the ComputeCostOfSale operation.
The rule model for the ComputeCostOfSale operation
specified, “If (Sales_Info) then compute and send
Amount_Pumped (FP_ID, (amount of gas * gas price per
gallon)). (The Gas Price per gallon is specified for 3
grades of gasoline).” This rule can be implemented using
the arc inscription shown. It could also be implemented

using a code segment. The initial
marking is provided to specify the
value of the attributes of an instance of
the Gas_Price class.

Amount_Pumped

HS

Gas_Price

SalesInfo

HS

Gas Station Pump

Figure 9. Fragment of Top-Level CP net Page.

Amount_Pumped SalesInfo

A more detailed example of this
process has been developed and is
used in academic classes. Lecture
notes are available on line at Levis and
Wagenhals, [2002] that contain details
of both the UML based architectures
and the synthesized CP-net.

It is possible to generalize the
mapping between the UML artifacts and the CP-net.
Figures 11 through 16 show the generalized mapping.
They are similar to Figures 7 through 10, but contain
generic classes, attributes and operations. They also
contain the generic activity diagram and a generic rule
associated with the one of the operations. Figures 11, 12
and 13 show related fragments of a class and activity
diagram and a rule associated with Operation 2.1 of Class
1. Figure 11 and 14 reveal that there is a direct mapping
from the class diagram to the Global Declaration Node.
The structure of the CP-net is derived from both the class
diagram and the activity diagram. The top page of the
structure (Figure 15) comes directly from the class
diagram, but the activity diagram is needed to specify the
input and output arcs in the CP-net, both on the top page
and on each sub-page of each substitution transition
(Figure 16). Finally, there is a need for rules to be
specified for each operation. These rules can be specified
using structured language, (if…then…else). The rules are
needed to specify the arc inscriptions of the CP-net and
any guard or code segments that may be used. The rules
must be consistent with the messages that invoke
operations, any attributes of the object that are used to
produce messages, and attributes whose value are
changed by the incoming message as a result of the
operation.

1`(1, 130)++
1`(2, 135)++
1`(3, 140)

(fpid, amt*prc) (fpid, gid, amt)

(gid, prc) gp Out P

I/O P

In P
Gas_Price

ComputeCostOfSale

Figure 10. Fragment of Gas Station Substitution Transition Page.

4 Evaluation of Architectures
Evaluating the effectiveness of C4ISR systems is a
difficult undertaking (Sproles, 2001; Levis, 1997).
Evaluating the architecture on the basis of which C4ISR
systems will be designed and built is an even harder one.
This is why the executable model is essential if
evaluation and ultimately comparison of different
architectures is to be accomplished. Once the executable
model has been constructed, it can be used in three forms
of evaluation: logical, behavioral, and performance. The
first step is to validate the logic of the model.

The static views describe the structure, the data, and the
rules that manipulate that data to accomplish tasks. We

need to verify that the combination of rules,
data, and structure “works”, e.g. the rules are
consistent and complete. This can be
accomplished by executing the model to be
sure that it runs properly. In a sense we are
“debugging” the architecture. Any errors
found must be corrected in the appropriate
static views to preserve traceability between
the executable model and the architecture
artifacts. One method that will do this is to
test a single thread in the model and to
examine each step of the execution to ensure
that the model is following the logic desired.

Any “flaws” will result in either an incorrect response or
a deadlock. The execution should match the behavioral
diagram models (sequence or collaboration diagrams).
Once flaws are corrected, we know that the executable
model runs. We know that the rules, structure, and data
logically work together.

Figure 16. Fragment of Generalized Substitution Transition Page.

Initial Marking

ArcInscrip 2

 Archinscrip 4
Archinscrip 3

Out P

I/O P

InP

Message Type 2

Class A1

Message Type 1
ArcInscrip 1

Operation 2.1

Figure 15. Fragment of General Top-Level CP net Page.

Message Type 2

HS

Class A1

Message Type 1

HS

Class 2 Class 1

Class 1

Figure 12. Generalized Activity Diagram.

Message Type 2
(Attribute 2.1 = Value 2.1,
Attribute 2.2 = Value 2.2)

Message Type 1
(Attribute 1.1 = Value 1.1,
Attribute 1.2 = Value 1.2)

Class 2

Operation 2.1

Operation 1.1

Message Type A1

Attribute a1.1: Domain a1.1
Attribute a1.2: Domain a1.2
….

Message Type 2

Attribute 2.1: Domain 2.1
Attribute 2.2: Domain 2.2
….

Message Type 1

Attribute 1.1: Domain 1.1
Attribute 1.2: Domain 1.2
….

Operation 1.1
Operation 1.2
….

Class 1

Figure 11. Fragment of Class Diagram.

Operation 2.1
Operation 2.2
….

Class 2

Rule Operation 2.1

If Message Type 1
(Attribute 1.1 = Value 1.1 and
Attribute 1.2 = Value 1.2)
then Message Type 2
(Attribute 2.1 = Compute(arg a1.1, Value 1.1) = Value 2.1,
 Attribute 2.2 = Compute(arg a1.2, Value 1.2) = Value 2.2)
Attribute a1.1 = Compute(arg a1.2, Value 1.1) = Value a1.1)
…
Else ….
 Figure 13. Generalized Rule.

The next step is to examine the behavior of the
architecture; this is an examination of the functionality of
the architecture. The behavior of the executable model
and the dynamics models, i.e., the activity, sequence, and
collaboration diagrams, should correlate. This behavior
evaluation has several facets. Does the architecture
produce the correct behavior for a given stimulus? Does
the information (or messages) arrive at the right functions
in the right sequence, i.e., are the inputs processed in the
required way? The behavior of the architecture should be
compared to the user’s requirements.

Figure 14. Fragment of Global Declaration Node.

Global Declaration Node
color Attribute 1.1 = Domain 1.1;
color Attribute 1.2 = Domain 1.2;
color Attribute 2.1 = Domain 2.1;
color Attribute 2.2 = Domain 2.2;
color Attribute a1.1 = Domain a1.1;
color Attribute a1.2 = Domain a1.2;
color Message Type 1 = product Attribute 1.1 * Attribute 1.2 ;
color Message Type 2 = product Attribute 2.1 * Attribute 2.2 ;
color Class A1 = product Attribute a1.1 * Attribute a1.2 ;
var va111 : Attribute 1.1 ;
var va112 : Attribute 1.2 ;
var va121 : Attribute 2.1 ;
var va122 : Attribute 2.2 ;
var va1a11 : Attribute a1.1 ;
var va1a12 : Attribute a1.2 ;

Because the executable model is a CP-net, the evaluation
of the architecture can be supported by both simulation
and analysis [Kristensen et al., 1998]. In using
simulation, the behavior of the architecture can be
examined by using inputs consistent with the operational
concept. State space analysis allows behavioral
properties to be verified by analysis without resorting to
simulation. These techniques can compliment the
multiple running of the model in simulation to reveal
overall properties. The techniques can reveal dead locks
(conditions in which the architecture stops executing),

infinite cycles (generally not desirable; they may indicate
the circulation of messages without resolution) and the
lower and upper bounds of the number of tokens (i.e., the
queues and their properties) that can occur in any place in
the architecture.

Some behavioral evaluation can be accomplished using
an executable model derived only from the functional (or
operational) architecture view. Single stimulus/response
analysis can show that the architecture does what it is
supposed to. Once the architecture has the desired
behavior for single stimulus/response it can be evaluated
for abnormal behaviors on the part of the external
systems. This can reveal errors/omissions in the model.
Additional behavioral evaluation can be accomplished
when some aspects of the physical architecture are
included. Processors, communications links, and their
associated delays may affect the behavior of the
architecture (e.g. sequencing of events). The impact of
time delays and processing times can be evaluated. With
the physical or systems architecture view providing
performance parameters to the executable model, the
latter can be used for performance evaluation.

5 Conclusion
There has been a growing need to be able to develop and
evaluate architectures for C4ISR systems. The
Department of Defense has released an Architecture
Framework that specifies how architectures should be
represented. Logical processes that are based on structure
analysis have been developed and tested. There is a great
deal to be gained if a sound process can be developed that
uses UML constructs to build these architectures. We
believe that such a process must guarantee that an
executable model can be synthesized from the
information contained in the UML artifacts.

We informally have shown such a process. It is based on
imposing style constraints on the rendering of the
architecture. It also requires strict adherence to the rules
of concordance. The process has been demonstrated on a
specific example of an information system. We believe
the process can be generalized and then formally
specified. Once this is done, it can be used by
organizations that are tasked with producing and
evaluating architectures. Such a formal specification can
also be used by tool vendors to develop extension to their
products that will automate the concordance process and
the automatic conversion of an architecture created using
UML to an executable model using CP-nets. Such
automation currently does not exist in commercial tools
so the conversion is a totally manual process.

The executable model can be a powerful tool for
determining the potential behavior and performance of
systems that are designed to be conformant to the
architecture. They can take the community of architects
from the process of just building architectures to the
process of using architectures to support operational and
investment decisions. Executable models of architectures
that are timed phased can be used to generate the data
needed to compute measures of performance and
effectives that can be viewed over time. This can assist in

the review and selection of investment strategies that are
based on MOPs and MOEs. Thus, architectures can be a
valuable tool for the management of change in an
environment of uncertainty.

Acknowledgments:
This work was supported by the Office of Naval Research
under grant No. N00014-00-1-0267. The contributions of
Daesik Kim and Asma Ali of the System Architectures
Laboratory at George Mason University are gratefully
acknowledged.

References:
Bienvenu, M., I. Shin, and A. H. Levis, C4ISR

Architectures III: An Object-Oriented Approach for
Architecture Design, Journal of Systems Engineering,
Vol. 3, No. 4, 2000

C4ISR Architecture Framework Version 2.0. C4ISR
Architecture Working Group. Department of Defense,
December 18. 1997.

Jensen, K., Coloured Petri nets, Basic Concepts,
Analysis Methods, and Practical Use. Volumes 1-3.
Monographs in Theoretical Computer Science.
Springer-Verlag, Berlin, 1997

Kristensen, L. M., S. Christensen, and K. Jensen, The
Practitioner's Guide to Coloured Petri Nets,
International Journal for Software Tools for
Technology Transfer, 2(2): 98-132 Springer_Verlag,
1998.

Levis, A. H. “Measuring the Effectiveness of C4I
Architectures,” Proc. Int’l Symposium on Defense
Information Systems, KIDIS, Seoul, Korea, June 1997.

Levis, A. H. and L. Wagenhals, L., C4ISR Architectures
I: Developing a Process for C4ISR Architecture
Design, Journal of Systems Engineering, Vol. 3, No. 4,
2000

Levis, A. H. and L. Wagenhals, C4ISR Architecture
Framework Implementation, Course Notes for AFCEA
Course 503, AFCEA, Fairfax, VA, 2002 available
online: http://viking.gmu.edu/http/503_v/index.html

Levis, A. H. and L. Wagenhals, Advances in C4ISR
Architectures, Course Notes for AFCEA Course 504,
AFCEA, Fairfax, VA 2002 available online:
http://viking.gmu.edu/504g/index.html

Object Modeling Group, Inc, Unified Modeling Language
Specification, version 1.3, June 1999.

Sproles, N, The Difficult Problem of Establishing
Measures of Effectiveness for Command and Control:
A Systems Engineering Perspective, Journal of
Systems Engineering, Vol. 4, No. 2, 2001

Wagenhals, L., I. Shin, D. Kim, and A. H. Levis, C4ISR
Architectures II: Structured Analysis Approach for
Architecture Design, Journal of Systems Engineering,
Vol. 3, No. 4, 2000

http://viking.gmu.edu/http/503_v/index.html
http://viking.gmu.edu/504g/index.html

	Introduction
	Object Orientation for Architecting
	Synthesis of the CP-net from the UML based architecture
	Evaluation of Architectures
	Conclusion
	Acknowledgments:
	References:

