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Abstract 

The United States Department of Defense (DoD) has mandated 
the development of Command, Control, Communications 
Computers, Intelligence, Surveillance, and Reconnaissance 
(C4ISR) Architectures to support the acquisition of systems that 
are interoperable and will meet the needs of military coalitions. 
This paper provides a general description of an architecting 
process based on the object oriented Unified Modeling 
Language (UML) that includes three phases: analysis, synthesis, 
and evaluation. It then provides a rationale for style constraints 
on the use of UML artifacts for representing DoD C4ISR 
architectures. Finally the paper describes both a mapping 
between the UML artifacts and an executable model based on 
Colored Petri nets that can be used for logical, behavioral, and 
performance evaluation of the architecture. A procedure for the 
conversion is also provided.  

Keywords: C4ISR Architectures, Object Orientation, UML, 
Colored Petri Nets 

1 Introduction 
Over the past decade, military organizations have 
mandated the use of architectures to address increased 
uncertainty about requirements, rapid changes in 
technology, changes in organizational structures, and a 
widening spectrum of missions and operations. Today, 
military organizations must respond to a variety of 
situations by quickly assembling and organizing 
coalitions from different components. These 
organizations must have the agility and flexibility to 
adapt to rapidly changing circumstances and bring about 
desired outcomes. This “plug and play” concept requires 
an unprecedented level of interoperability in the 
information systems that support the various units of a 
coalition. To achieve this flexibility, the US Department 
of Defense has looked to information architectures to 
provide current or future descriptions of various 
“domains” composed of components and their 
interconnections, actions or activities those components 
perform, and rules or constraints for those activities. One 
of the main areas of emphasis is the information 
exchange that will take place between elements of the 
architecture. The department has published the C4ISR 
Architecture Framework [1997] that provides common 
definitions, data, and references, and describes a set of 
products that comprise three views of an architecture. 

While this framework provides a standardized format for 
describing architectures, it does not provide a procedure 
for developing the artifacts that are used in the 
description.  The lack of a definitive process has posed a 
challenge to those who are responsible for developing 
architectures that are compliant with the framework.  
Indeed, the issue of how to implement to the framework 
has been an area of research by the authors.   

Responding to this requirement, two fundamental 
approaches have been used to implement the C4ISR 
Architecture Framework: structured analysis and object 
orientation [Levis and Wagenhals, 2000; Wagenhals, et 
al., 2000]. Which ever approach is used, the fundamental 
goals in developing the architectures are (1) to obtain a 
description of a C4ISR architecture, based on three 
architecture views, that answers the users’ and operators’ 
(warfighters’) questions and supports the acquisition 
community’s needs, (2) to develop an implementable 
process that uses current knowledge and tools to produce 
the desired description, (3) to develop an executable 
model that enables behavioral analysis and performance 
evaluation, and (4) to be able to carry out that evaluation. 
To support these goals, architecture design processes 
have been partitioned into three phases: analysis, 
synthesis, and evaluation. The analysis phases involves 
the development of static, dynamic, and implementation 
representations of the architecture. Note that these 
representations are static views, they contain a great deal 
of descriptive material including descriptions of dynamic 
behavior, but they cannot execute and generate dynamic 
behavior. In the synthesis phase, the elements of 
information developed in the analysis phase are converted 
to an executable model. These models are capability of 
generating dynamic behavior. In the evaluation phase, the 
executable model is used to verify the logical, behavioral, 
and performance aspects of the architecture and compare 
them with user requirements.  

In order to use Object Orientation for architectures, 
research has been undertaken to address three problems; 
(1) can an Object Oriented process be developed and used 
to design an architecture, (2) what is the set of UML 
[Object Modeling Group, 1999] diagrams that should be 
used to represent a complete architecture for information 
or C4ISR systems, and (3) can a process for converting 
the object oriented representation of an architecture to an 
executable model be developed, thus formalizing the 
synthesis phase of the overall process? In Bienvenu et al., 
[2000] the artifacts of object orientation and their use in 
designing C4ISR architectures conformant to the C4ISR 
Architecture Framework, version 2.0, were discussed. 
While that work established the fact that an architecture 
could be developed using object orientation and that the 
resulting design could be mapped to the requisite C4ISR 
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Figure 1. Top Level View of the Architecting Process. 
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products (problems 1 and 2), it stopped short of 
addressing problem 3. This paper introduces a new 
formulation of the architecture design problem that leads 
to an executable model (problem 3).  

This paper is structured as follows. Section 2 describes 
the basic UML constructs that are used to render an 
architecture and describes a process for creating an 
architecture that is composed of those constructs. As part 
of that process, a specific style is imposed so that the 
conversion of the architecture to the executable model 
can be readily accomplished. Section 3 describes the 
mapping, and thus a conversion process from the UML 
artifacts used in the architecture to the executable model. 
In this case, the Colored Petri net (CP-net) [Jensen, 1997] 
formulism is used for the executable. Finally, Section 4 
provides the conclusions and directions for further 
research.  The authors assume that the reader has some 
familiarity with the main UML artifacts, and a basic 
understanding of colored Petri nets, in particular the 
elements of their graphical representation.   

2 Object Orientation for Architecting 
The Uniform Modeling Language (UML) has become the 
standard for visualizing, specifying, constructing, and 
documenting systems. It is a modeling language that has a 
vocabulary (symbols), semantics, and syntax. Within the 
language, there are two classes of modeling constructs or 
views, called diagrams. The structural diagrams, i.e. 
class, object, component, and deployment diagrams, 
document the static aspects of the system being modeled. 
Behavioral diagrams, i.e. activity, collaboration, 
sequence, state chart, and use case diagrams portray the 
dynamic behavior of the system. When used to specify a 
system, each of these diagrams represents a specific 
aspect of the same system.  

UML is a rich language that can be used to represent 
architectures of information systems, including C4ISR 
systems, using multiple views. Two problems must be 
addressed: what is the necessary and sufficient set of 
UML artifacts to represent an architecture in the analysis 

phase and what is the process by which these views will 
be created. The fact that we want to be able to synthesize 
an executable model in the form of a Colored Petri (CP) 
net helps answer the first question because the UML 
views will need to contain all of the information 
necessary to full specify the CP-net. The conversion 
process requires that all of the artifacts are consistent with 
one another. This means that the process must include a 
formal procedure for model concordance.  

Figure 1 shows a high level depiction of the process. One 
starts with a mission, which, in the context of C4ISR 
architectures, is usually is a military mission, function, or 
task.  From this mission, an operational concept is created 
that describes how the mission will be carried out. The 
operational concept then drives the architecture design 
process. The architecture can be viewed as having two 
perspectives, a logical perspective and a physical 
perspective. The logical perspective details the activities 
and information flows that will accomplish the 
operational concept. The physical perspective describes 
the physical nodes and links that will be instantiated to 
carry out the activities of the logical perspective. It may 
also involve a description of the organizational structure 
that will be associated with the physical systems and the 
roles of the elements of the organization that will be 
involved in carrying out the activities. When using UML, 
Use Cases offer a means for refining the operational 
concept and can act as a bridge between it and the logical 
perspective. We call the logical perspective the logical 
architecture view. Elements of the logical architecture can 
be allocated to the elements of the physical architecture to 
complete the architecture design. The two-headed arrow 
between the logical and the physical perspectives in 
Figure 1 illustrates this approach. From a UML 
perspective, the logical architecture is composed of both 
static structural diagrams including class and object 
diagrams, and behavioral representation, including 
activity, sequence, collaboration, and state chart 
diagrams. The physical architecture can be represented 
using either class diagrams or implementation diagrams.  



Figure 2.  UML based architecture design process 
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The development of the Logical, Physical, and 
Organizational models constitutes the analysis phase of 
the architecting process. Once completed, it must be 
possible to synthesize the executable model from these 
artifacts. This constitutes the synthesis phase of the 
architecting process. Once the executable has been 
constructed and tested, it can be used to support the 
evaluation phase. In this phase, the executable model is 
used compare the behavior of the architecture against user 
requirements and to generate data to compute measures of 
performance (MOPs) and measures of effectiveness 
(MOEs).  It should be noted that it is possible to develop 
an executable model from the information contained in 
the logical architecture view only. Such an executable can 
be used to evaluate logical and behavioral aspects of the 
architecture. .   

A five stage process has been developed that uses the 
UML and its associated diagrams to design and represent 
architectures of C4ISR systems (Figure 2). In stage 0, all 
of the domain information needed to design the 
architecture is collected. This includes descriptions of the 
operational concept, functions, and tactics, techniques, 
and procedures as well as physical systems and 
organizational structures that will be included in the 
architecture. In the second stage, the operational concept 
is formulated and depicted as an operational concept 
graphic. In addition, use cases and their diagrams are 
created to describe scenarios between users and the 
system for which the architecture is being developed. A 
scenario is a sequence of interactions between a user and 
a system. Once the required operation of the system has 
been defined, the logical architecture for carrying out the 
use cases is designed in stage 2. The architect decides 
what activities and information flows will accomplish the 
operational concept as defined by each Use Case, 
allocates those activities to classes, determines the 
attributes that each class needs to carry out its activities 

(operations), and develops the rules for each operation. 
Once the Logical Architecture View is completed, the 
Architect can show how the logical construct will be 
allocated to the physical aspects of the design in stage 3. 
There are at least two ways to do this. In one method, the 
architect can use component diagrams that reflect the 
actual components that will reside inside the physical 
nodes of the system and deployment diagrams that reflect 
the allocation of the components to physical nodes. 
Alternatively, the architect can use class diagrams to 
represent physical system nodes, messages, and 
components.   

Throughout the stages, the architect must develop and 
maintain an integrated dictionary, a single repository of 
definitions and descriptions of all elements of every 
diagram in the architecture. In addition, the architect must 
ensure that consistency is maintained between all of the 
views. We call this maintaining concordance, and it is 
crucial throughout this process.  Because of the general 
nature of their use, modern tools that support object 
oriented analysis do not support concordance in the 
manner required to design an architecture.   However, 
tool vendors` e.g. Popkin Software, Inc. and Ptech, Inc. 
are responding to the need by providing special 
extensions to their basic tools that support the C4ISR 
Architecture Framework.   

The concordances concepts are reflected in Figure 3. It 
shows activity, sequence and collaboration diagrams as 
well as a class diagram. The activities in the activity 
diagram use the same name as the equivalent operations 
in the collaboration diagram. The arrows in the activity 
diagram correspond to messages or events associated 
with links in the collaboration diagram. The message or 
event descriptions represent the operation being called by 
an object to include any parameters that are contained in 
the message. These messages descriptions are the same 
on both the collaboration and the sequence diagrams. 



Finally, the Class diagram reflects a composite of the 
collaboration diagrams plus other collaboration diagrams 
not shown.  

Since it is a requirement that we be able to synthesize an 
executable model from the static views developed using 
UML, it was important to consider both the requirements 
of the architecture design and the target executable 
modeling formalism, CP-nets. CP-nets are not inherently 
object oriented. They have a fixed structure that does not 
change dynamically. On the other hand, objects can have 
relatively short life times, that is, they can be created and 
destroyed during the course of a scenario. The challenge 
is how to represent the types of objects that come and go 
in at CP-net.  Of course, CP-nets have tokens that can be 
created and destroyed within the structure. Thus, one 
approach is to use tokens to represent objects.  It is easy 
to understand that tokens can represent the attributes of 
objects.  However, representing the operations in a 
manner that supports the visualization of objects is 
difficult.   

C4ISR architectures are composed of a combination of 
fixed structures and objects that have short life cycles. 
The fixed structures are related to the physical 
components of the architecture. They include operational 
nodes and elements and system nodes, systems, system 
components, and communications links. Because of the 
emphasis on interoperability, C4ISR Architectures 
emphasize the information exchange requirements (IERs) 
between the static elements of the architecture. These 
IERs represent messages and data. This understanding 
induces the concept that the architecture is composed of 
fixed, long-term objects (the nodes and links) and the 
short term, transitory objects, the messages and data. 

Thus the fundamental concept for the conversion is that 
fixed elements of the architecture will be represented by 
the fixed structure of the CP-net (transition, places, and 
arcs), and the transitory messages and data will be 
represented by tokens.   
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Figure 3.  Concordance between activity, collaboration, sequence, and class diagrams. 

To implement this fundamental concept for the 
conversion of the UML artifacts to the CP-net executable 
model, two style restrictions have been incorporated in 
the analysis process. In the first style constraint, the 
architect must partition the classes into those that 
represent the fixed structure and those that represent the 
transient messages and data. Messages will be passed 
between the fixed objects. Since messages or data will be 
represented by tokens in the CP-net, messages and data 
will be represented as classes that have only attributes. 
Thus, the messages or events that are described in the 
collaboration and sequence diagrams are rendered as 
association classes on the class diagrams between classes 
that represent the fixed classes of the architecture. Figure 
4 shows a fragment of an activity diagram and the 
associated fragment of a class diagram. This architecture, 
that represents a billing system for a gasoline station1, has 
two fixed objects: a pump and a gas station. Messages are 
exchanged between these two objects based on the 
operations of each. The activity diagram shows that a 
message is passed from an activity that is performed by a 
Pump object operation, ProvideSalesInfo, to an activity 
performed by a Gas_Station object operation, 
ComputeCostOfSale. The content of the message, which 

                                                           
1 An example of a gas station credit card billing system is used in this 
paper rather than a C4ISR system because its operational concept is will 
understood by a general audience.   



Figure 5.  Aggregation association to implement style 
constraint. 
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will be specified in the collaboration diagram, is a triple, 
(FP_ID, Grade, Amount). The corresponding class 
diagram has a Pump class and a Gas_Station class, each 
with assigned operations including the two shown in the 
activity diagram fragment. The message is manifested as 
an association class between the Pump and Gas_Station 
classes and has the three attributes that constitute the 
content of the message. As we will see in section 3, this 
will simplify the conversion of the information in the 
class diagram to the CP-net structure.  

In the second style constraint, all non-association classes, 
which represent the fix elements of the architecture, will 
be converted into sets of classes that contain either 
operations or attributes, but not both. This can be done 
using the aggregation form of association. Any non-
association class that has both operations and attributes is 
converted to a “parent” object that only contains the 
operations and one or more “child” objects that contain 
the attributes and have the aggregation association with 
the parent object. Figure 5 illustrates this conversion.  

3 Synthesis of the CP-net from the UML based 
architecture 

An algorithm has been formulated to facilitate the 
conversion of the Object Oriented artifacts into the 
executable model. The algorithm requires a specific style, 
explained in Section 2, which restricts the construction of 
those artifacts. It is essential that all concordance errors 
between various artifacts be corrected before the 
conversion to the executable model. A discrete event 
dynamical system model is appropriate because it allows 
the modeling of concurrent, asynchronous, event driven 
systems, which characterize C4ISR systems. We have 
adopted Colored Petri Nets [Jensen, 1992] for 

representing the executable model because they can be 
used for mathematical analysis as well as for simulations.  

Class Diagram 

Figure 4 Association classes specify messages
or events. 
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 Several approaches can be used to generate the 
executable model. For example, executable models can 
be derived from various behavioral diagrams (activity 
diagrams, state chart diagrams, etc.) or structural 
diagrams (class, object, implementation diagram, etc.). 
Our approach requires information from several 
concordant diagrams. We have chosen to use the class 
diagram to provide the basic structure for the conversion 
to a CP-net because it is the most general description of 
the object oriented design of the architecture. We assume 
the class diagram has been derived using the procedure 
described in Section 2 so that it contains information 
derived from activity, collaboration, and sequence 
diagrams. The conversion requires information from 
activity diagrams and rule models that have been 
specified for each operation of the classes.  

In constructing the CP-net we need to create an 
unambiguous mapping between the elements of the 
various UML diagrams and the elements of the CP-net. 
This includes structural elements, i.e places, transition, 
input and output arcs, and logical elements, including 
color sets and variables in the global declaration node, the 
associations of color sets with places, arc inscriptions, 
guard functions, and code segments. Finally we need to 
determine the initial markings of the CP-net. We will 
illustrate the mapping with a series of figures.  Figure 6 
summarizes the algorithm.  

Figures 7 through 10 will be used to illustrate algorithm 
for converting the class diagram to the CP-net using the 
architecture of the gasoline station. Figure 7 shows a 
fragment of a class diagram that has been created using 
the style constraints described in Section 2. Note that 
each class has either attributes or operations, but not both. 
The association classes present the messages that will be 
passed from one operation to another. The attributes of 
non-association classes have been captured in classes that 
have the aggregation association with the class that has 
the operations. In this example, a class called Pump will 
generate SaleInfo messages that are send to the 
ComputeCostofSale operation of an instance of the 
Gas_Station class. The ComputeCostOfSale operation 
will use the data contained in the SaleInfo message and 
data contained in the GasPrice class to generate an 
Amount_Pumped message.  



Global Declaration Node 
color FP_ID = int; 
color Grade_ID = int; 
color Amount = int; 
color Price = int; 
color SalesInfo = product FP_ID * Grade * Amount ; 
color Gas_Price = product Grade_ID * Price ; 
color Amount_Pumped = product FP_ID * Amount ;  
var fpic : FP_ID ; 
var gid : Grade_ID ; 
var amt : Amount ; 
var prc : Price ; 
… 

Figure 7. Fragment of Class Diagram. 
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1. Construct the Global Declaration Node using 
the attributes of all of the classes in the cla
diagram.   

2. Construct the hierarchical CP net:  
2.1. Create a substitution transition for each 

interacting classes in the class diagram  
2.2. Create a place for each association and 

aggregated classes. Assign the appropriate 
colorset.  

2.3. Create arcs between the substitution 
transitions and the places using the activity 
diagram.  There should be a one-to-one 
matching between the numbers of 
associations in the class diagram and the 
number of places between transitions in 
the executable diagra

2.4. Create a sub-page for each substitution 
transition. 

2.4.1. Create a transition for each 
operation. 

2.4.2. Assign the Input, Output, and I/O 
ports places 

2.4.3. Create the Arcs based on the 
activity diagram 

2.4.4. Add Arc inscriptions, guard 
functions, or code segments 
derived from the rules associated 
with each operation.   

2.5. Specify initial markings for each place that
represents an aggregate class.   

We begin the algorithm with step 1 by constructing the 
Global Declaration Node. The Global Declaration Node 
is constructed using information in the class diagram. 
“Atomic” color sets are defined for the different attributes 
of the classes in the class diagram. Each color set should 
have the same name as the attribute it represents. The 
domain of the attribute is specified in the class diagram 
and is used to define each color set. Variables are defined 
for each atomic color set. Color sets for the classes are 
defined as products of atomic color sets. ML records also 
could be used. These color sets are given the same name 
as the classes they represent and the color set region of 
each place is selected from the appropriate color set in the 
global declaration node.   

Figure 8 illustrates step 1 of the algorithm, the generation 
of the Global Declaration node from a fragment of a class 
diagram of Figure 7.  The class diagram shows two 
classes, a Pump and a Gas_Station class.  The association 
class SalesInfo represents message that are passed from a 
Pump object to a Gas_Station object.  The SalesInfo class 
has three attritubes, each of type integer:  FP_ID, 
Grade_ID, and Amount.  In the corresponding Global 
Declaration Node, each attribute is declared.  In this 
example the color set SalesInfo is declared as a product of 
the three attribute color sets that comprise the SalesInfo 
class.  Variables are also declared for the color sets.  In a 
similar fashion products of the atomic color sets are used 

to specify the color sets for the attributes of the non-
association classes (which will correspond to tokens that 
represent the value of the attributes of the object with 
which the class is associated).  In figure 8 the color set 
Gas_Price is declared as a product of Grade_ID and 
Price.  

Figure 6.  Procedure for synthesizing CP net 
from a UML based Architecture. 

Figure 8. Fragment of Global Declaration Node.

In step 2 of the algorithm, a hierarchical structure is 
developed for the CP-net. The top-level page corresponds 
to the class diagram. In step 2.1, on the top-level diagram, 
substitution transitions are created for each (non 
association) class that is not the “part-of” aspect of an 
aggregation relationship. These are the “parent” classes 
that contain only operations. In step 2.2 the classes that 
are the “part-of” aspect (the ones with only attributes) 
become port places on the top page and are connected to 
the substitution transition that represents the parent class 
with an input/output port and socket. Their color sets will 
be defined from the set of attributes in the class. Places 
are created on the top-level page for each association 
class. Each is given the appropriate color set that was 
specified in the global declaration node for the 
association class.  In step 2.3 arcs are created on the top-
level page.   

Figure 9 illustrates the conversion of the fragment of the 
class diagram in Figure 7 to the CP net structure.  In step 
2.1 substitution transitions are created to represent the 
Pump and Gas_Station classes.  These are the classes that 



have operations. In step 2.2, places are created for each 
association class (SalesInfo and Amount_Pumped).  A 
place is created for the Gas_Price class that is “part-of” 
the Gas_Station.  This place will carry a token that 
represents the values of the attributes of the Gas_Station. 
In step 2.3 arcs are created.  The direction of each arc 
connecting a place and a transition is determined from the 
activity diagram (see Figure 4). Arcs are created from the 
Pump substitution transition to the SalesInfo place 
indicating the Pump generates (sends) a SalesInfo 
message (object).  This message goes to the Gas_Station 
so an arc is created from the SalesInfo place to the 
Gas_Station substitution transition. Input/Output arcs are 
used between the non-association Gas_Price place and 
the corresponding Gas_Station substitution transition to 
allow the Gas_Station transition to access and update the 
value of its attributes.    

In step 2.4, a sub-page is created for each substitution 
transition. Each operation for a class is represented by a 
transition that is placed on the sub-page of the 
substitution transition for the class to which it belongs. 
The places that represent the association classes and the 
classes with no operations that interact with the class are 
also placed on the sub-page of the substitution transition. 
They become input or output port places on the pages that 
represent the substitution transitions.  

The direction of the arcs may be determined from the 
activity diagram or the collaboration diagrams, if they are 
not explicitly indicated on the class diagram. On the sub-
pages of the substitution transitions, the activity diagram 
is used to determine how each port place is connected to 
the transitions that represent the operations of the class. 
Finally, the rule model [Levis and Wagenhals, 2002] is 
used to specify the arc inscriptions, guard functions, or 
code segments. These rules have the structure: if (set of 
input conditions) then (set of output conditions), else 
(set of output conditions).  

Figure 10 shows a fragment of the Gas_Station sub-page 
featuring the transition that represents the 

ComputeCostOfSale operation. The activity diagram 
provided the information needed to connect the input and 
output port places to the ComputeCostOfSale operation. 
The rule model for the ComputeCostOfSale operation 
specified, “If (Sales_Info) then compute and send 
Amount_Pumped (FP_ID, (amount of gas * gas price per 
gallon)). (The Gas Price per gallon is specified for 3 
grades of gasoline).” This rule can be implemented using 
the arc inscription shown. It could also be implemented 

using a code segment. The initial 
marking is provided to specify the 
value of the attributes of an instance of 
the Gas_Price class.  

Amount_Pumped 

HS 

Gas_Price 

SalesInfo 

HS 

Gas Station Pump 

Figure 9. Fragment of Top-Level CP net Page.

Amount_Pumped SalesInfo 

A more detailed example of this 
process has been developed and is 
used in academic classes. Lecture 
notes are available on line at Levis and 
Wagenhals, [2002] that contain details 
of both the UML based architectures 
and the synthesized CP-net.  

It is possible to generalize the 
mapping between the UML artifacts and the CP-net. 
Figures 11 through 16 show the generalized mapping. 
They are similar to Figures 7 through 10, but contain 
generic classes, attributes and operations. They also 
contain the generic activity diagram and a generic rule 
associated with the one of the operations. Figures 11, 12 
and 13 show related fragments of a class and activity 
diagram and a rule associated with Operation 2.1 of Class 
1.  Figure 11 and 14 reveal that there is a direct mapping 
from the class diagram to the Global Declaration Node. 
The structure of the CP-net is derived from both the class 
diagram and the activity diagram. The top page of the 
structure (Figure 15) comes directly from the class 
diagram, but the activity diagram is needed to specify the 
input and output arcs in the CP-net, both on the top page 
and on each sub-page of each substitution transition 
(Figure 16).  Finally, there is a need for rules to be 
specified for each operation. These rules can be specified 
using structured language, (if…then…else). The rules are 
needed to specify the arc inscriptions of the CP-net and 
any guard or code segments that may be used. The rules 
must be consistent with the messages that invoke 
operations, any attributes of the object that are used to 
produce messages, and attributes whose value are 
changed by the incoming message as a result of the 
operation.   

1`(1, 130)++ 
1`(2, 135)++ 
1`(3, 140) 

(fpid, amt*prc) (fpid, gid, amt) 

(gid, prc) gp Out P 

I/O P 

In P 
Gas_Price 

ComputeCostOfSale 

Figure 10. Fragment of Gas Station Substitution Transition Page. 

4 Evaluation of Architectures  
Evaluating the effectiveness of C4ISR systems is a 
difficult undertaking (Sproles, 2001; Levis, 1997). 
Evaluating the architecture on the basis of which C4ISR 
systems will be designed and built is an even harder one. 
This is why the executable model is essential if 
evaluation and ultimately comparison of different 
architectures is to be accomplished. Once the executable 
model has been constructed, it can be used in three forms 
of evaluation: logical, behavioral, and performance.  The 
first step is to validate the logic of the model. 



The static views describe the structure, the data, and the 
rules that manipulate that data to accomplish tasks.  We 

need to verify that the combination of rules, 
data, and structure “works”, e.g. the rules are 
consistent and complete. This can be 
accomplished by executing the model to be 
sure that it runs properly. In a sense we are 
“debugging” the architecture. Any errors 
found must be corrected in the appropriate 
static views to preserve traceability between 
the executable model and the architecture 
artifacts.  One method that will do this is to 
test a single thread in the model and to 
examine each step of the execution to ensure 
that the model is following the logic desired.  

Any “flaws” will result in either an incorrect response or 
a deadlock.  The execution should match the behavioral 
diagram models (sequence or collaboration diagrams).  
Once flaws are corrected, we know that the executable 
model runs.  We know that the rules, structure, and data 
logically work together. 

Figure 16. Fragment of Generalized Substitution Transition Page. 

Initial Marking  

ArcInscrip 2 

 Archinscrip 4 
Archinscrip 3 

Out P 

I/O P

InP

Message Type 2 

Class A1 

Message Type 1 
ArcInscrip 1 

Operation 2.1 

Figure 15. Fragment of General Top-Level CP net Page. 

Message Type 2 

HS 

Class A1 

Message Type 1 

HS 

Class 2 Class 1 

Class 1 

Figure 12. Generalized Activity Diagram. 

Message Type 2  
(Attribute 2.1 = Value 2.1, 
Attribute 2.2 = Value 2.2) 

Message Type 1  
(Attribute 1.1 = Value 1.1, 
Attribute 1.2 = Value 1.2) 

Class 2 

Operation 2.1 

Operation 1.1  

Message Type A1 

Attribute a1.1: Domain a1.1 
Attribute a1.2: Domain a1.2 
…. 

Message Type 2 

Attribute 2.1: Domain 2.1 
Attribute 2.2: Domain 2.2 
…. 

Message Type 1 

Attribute 1.1: Domain 1.1 
Attribute 1.2: Domain 1.2 
…. 

Operation 1.1 
Operation 1.2 
…. 

Class 1 

Figure 11. Fragment of Class Diagram. 

Operation 2.1 
Operation 2.2 
…. 

Class 2 

Rule Operation 2.1 
 
If  Message Type 1  
(Attribute 1.1 = Value 1.1 and  
Attribute 1.2 = Value 1.2)  
then Message Type 2  
(Attribute 2.1 = Compute(arg a1.1, Value 1.1) = Value 2.1, 
 Attribute 2.2 = Compute(arg a1.2, Value 1.2 ) = Value 2.2) 
Attribute a1.1 = Compute(arg a1.2, Value 1.1) = Value a1.1)  
… 
Else …. 
 Figure 13. Generalized Rule. 

The next step is to examine the behavior of the 
architecture; this is an examination of the functionality of 
the architecture. The behavior of the executable model 
and the dynamics models, i.e., the activity, sequence, and 
collaboration diagrams, should correlate. This behavior 
evaluation has several facets. Does the architecture 
produce the correct behavior for a given stimulus? Does 
the information (or messages) arrive at the right functions 
in the right sequence, i.e., are the inputs processed in the 
required way? The behavior of the architecture should be 
compared to the user’s requirements.   

Figure 14. Fragment of Global Declaration Node. 

Global Declaration Node 
color Attribute 1.1 = Domain 1.1; 
color Attribute 1.2 = Domain 1.2; 
color Attribute 2.1 = Domain 2.1; 
color Attribute 2.2 = Domain 2.2; 
color Attribute a1.1 = Domain a1.1; 
color Attribute a1.2 = Domain a1.2; 
color Message Type 1 = product Attribute 1.1 * Attribute 1.2 ; 
color Message Type 2 = product Attribute 2.1 * Attribute 2.2 ;
color Class A1 = product Attribute a1.1 * Attribute a1.2 ; 
var va111 : Attribute 1.1 ; 
var va112 : Attribute 1.2 ; 
var va121 : Attribute 2.1 ; 
var va122 : Attribute 2.2 ; 
var va1a11 : Attribute a1.1 ; 
var va1a12 : Attribute a1.2 ; 

Because the executable model is a CP-net, the evaluation 
of the architecture can be supported by both simulation 
and analysis [Kristensen et al., 1998].  In using 
simulation, the behavior of the architecture can be 
examined by using inputs consistent with the operational 
concept.  State space analysis allows behavioral 
properties to be verified by analysis without resorting to 
simulation.  These techniques can compliment the 
multiple running of the model in simulation to reveal 
overall properties. The techniques can reveal dead locks 
(conditions in which the architecture stops executing), 



infinite cycles (generally not desirable; they may indicate 
the circulation of messages without resolution) and the 
lower and upper bounds of the number of tokens (i.e., the 
queues and their properties) that can occur in any place in 
the architecture.   

Some behavioral evaluation can be accomplished using 
an executable model derived only from the functional (or 
operational) architecture view.  Single stimulus/response 
analysis can show that the architecture does what it is 
supposed to.  Once the architecture has the desired 
behavior for single stimulus/response it can be evaluated 
for abnormal behaviors on the part of the external 
systems.  This can reveal errors/omissions in the model.  
Additional behavioral evaluation can be accomplished 
when some aspects of the physical architecture are 
included.  Processors, communications links, and their 
associated delays may affect the behavior of the 
architecture (e.g. sequencing of events). The impact of 
time delays and processing times can be evaluated.  With 
the physical or systems architecture view providing 
performance parameters to the executable model, the 
latter can be used for performance evaluation.   

5 Conclusion 
There has been a growing need to be able to develop and 
evaluate architectures for C4ISR systems. The 
Department of Defense has released an Architecture 
Framework that specifies how architectures should be 
represented. Logical processes that are based on structure 
analysis have been developed and tested. There is a great 
deal to be gained if a sound process can be developed that 
uses UML constructs to build these architectures. We 
believe that such a process must guarantee that an 
executable model can be synthesized from the 
information contained in the UML artifacts.  

We informally have shown such a process. It is based on 
imposing style constraints on the rendering of the 
architecture. It also requires strict adherence to the rules 
of concordance. The process has been demonstrated on a 
specific example of an information system. We believe 
the process can be generalized and then formally 
specified. Once this is done, it can be used by 
organizations that are tasked with producing and 
evaluating architectures.  Such a formal specification can 
also be used by tool vendors to develop extension to their 
products that will automate the concordance process and 
the automatic conversion of an architecture created using 
UML to an executable model using CP-nets. Such 
automation currently does not exist in commercial tools 
so the conversion is a totally manual process.   

The executable model can be a powerful tool for 
determining the potential behavior and performance of 
systems that are designed to be conformant to the 
architecture.  They can take the community of architects 
from the process of just building architectures to the 
process of using architectures to support operational and 
investment decisions.  Executable models of architectures 
that are timed phased can be used to generate the data 
needed to compute measures of performance and 
effectives that can be viewed over time.  This can assist in 

the review and selection of investment strategies that are 
based on MOPs and MOEs.  Thus, architectures can be a 
valuable tool for the management of change in an 
environment of uncertainty.   
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