
UML + ROOM as a Standard ADL?

B. Rumpe, M. Schoenmakers A. Radermacher, A. Schürr

Dept. of Computer Science IV Institute of Software Technology
Munich University of Technology University of the Federal Armed Forces, Munich

80333 Munich, Germany 85577 Neubiberg, Germany
[rumpe|schoenma]@in.tum.de [ansgar|schuerr]@informatik.unibw-muenchen.de

Abstract

Designing a software system’s architecture properly is one
of the most important tasks of any software engineering
project. Nevertheless there exists no common definition
of the term “software architecture” and no standard soft-
ware architecture description language (ADL). This paper
discusses whether the standard OO modeling language
UML is a standard ADL, explains some deficiencies if
used for this purpose, and makes a proposal of how to
eliminate these deficiencies. The proposal is based on the
widely accepted idea that elements of the component-based
OO modeling language ROOM should be integrated with
UML. It explains why the idea of merging static structure
diagrams of ROOM with behavior describing collabora-
tion diagrams of UML is not sufficient and presents an
additional approach for the integration problem.

Keywords

Architecture Description Language, Unified Modeling
Language, Real-Time Object-Oriented Modeling, UML,
ROOM, Software Architecture, Software Components

1 Introduction

Software architecture is an important field of study that
is becoming more and more influential in the field of
software engineering. In the last years piles of papers
and books have been published about software architec-
ture description languages, architectural styles, reference
architectures, architecture frameworks, and design pat-
terns. Furthermore, the software engineering community
agrees on the fact that a software system’s architecture
plays a key role for planning its development process and
for guaranteeing its quality concerning certain functional
and nonfunctional requirements such as its “correctness”,

availability, performance, maintainability, portability, etc.
[2]. Nevertheless, there is no common agreement on the
definition of the term “software architecture”. Some re-
searchers even stress the point that a software system does
not have a single architecture, but a set of architectures
constructed for rather different purposes and emphasizing
rather different properties of the modeled system [2].

As a consequence, most books or papers about this
topic start with just another definition of the term software
architecture and introduce their own architecture descrip-
tion language (ADL). A rough classification of the ADL
literature shows that there are at least two main categories
of ADLs:

1. More recently published papers often favor the view
that software architectures are “components + con-
nectors + behavioral constraints” [24].

2. Elder papers usually adhere to the terminology of
so-called module interconnection languages (MIL),
where a software architecture is a set of modules with
different kinds of dependency relationships between
them [14].

Nevertheless, there is some hope that the invention of
new ADLs and the associated discussion “who’s ADL is
the best one and who’s terminology is correct” may be
terminated by using the Unified Modeling Language UML
as a starting point for a standard software architecture
description language [20, 3]. UML is a widely accepted
OMG standard of an object-oriented modeling language,
which combines a rather broad spectrum of visual model-
ing sublanguages:

� Class diagrams and package diagrams offer all con-
cepts of MILs (information hiding, import relation-
ships, inheritance, genericity, . . .).

� The object constraint language OCL [25] allows for
the definition of invariants as well as for pre- and post-
conditions and offers thereby the necessary means for
“designing by contract”.

� Various types of diagrams (state transition diagrams,
collaboration diagrams etc.) may be used to model
the dynamic behavior of networks of related objects.

� Finally, component and deployment diagrams may be
used to define a mapping of logical software objects
onto available hardware components.

Despite it’s richness, UML has a number of drawbacks
compared with component-based ADLs like those pre-
sented in [24]. This is mainly due to the fact that UML’s
component diagrams are not intended to represent the
logical decomposition of a software system into reusable
and combinable subsystems:

“a component is a physical unit of implemen-
tation . . . ” (cf. page 93 of [20]).

Furthermore, UML does not offer the concept of con-
nectors as first-order objects, which would be a hybrid
of an association (association class) and a dependency
between a class and an interface of another class.

In contrast to UML another well-known OO modeling
language called ROOM [22] — mainly used for Real-
time Object-Oriented Modeling purposes — combines a
variant of component (actor) diagrams with another variant
of state transition diagrams. It fulfills thereby the main
requirements for an ADL stated in [24], but it offers no
equivalent for UML’s object constraint language or its
package diagrams.

Fortunately, efforts are made to merge the advantages
of both approaches. In particular ROOM’s actor diagrams
are incorporated into UML by mapping them to UML
collaboration diagrams [23]. We do not believe that it is
sufficient to treat ROOM’s actor diagrams as an extension
of UML’s collaboration diagrams, as actor diagrams deal
a lot more with structure and also with possible paths of
communication than collaboration diagrams do.

Within this paper, we will first sketch how ROOM’s
actor diagrams look like (cf. Section 2). Afterwards, we
will discuss why these actor diagrams should be added
to UML as a separate type of diagram. We argue that
a mapping of ROOM’s actor diagrams to UML class
diagrams in addition to the existing mapping gives us a
tight integration with UML. (cf. Section 3). Last but
not least we will explain in more detail how ROOM actor
diagrams may be translated into pure UML class diagrams
(cf. Section 4).

Please note that this paper is written based on the
assumption that its readers are familiar with the basic
elements of UML. Nevertheless, we do hope that the
explanations of all presented UML diagrams are detailed
enough such that those readers, who are not familiar with
UML, understand the paper’s main message.

2 An Introduction to ROOM

ROOM as described in [22] mainly offers two types of
diagrams. ROOM actor diagrams describe the hierarchical
decomposition of a software system into its components as
well as all possible connections (communication channels)
between these components. ROOM charts on the other
hand are a variant of hierarchical state transition diagrams
derived from StateCharts [10]. The translation of any
ROOM chart into an equivalent UML state transition
diagram is rather straightforward and will not be regarded
here.

A ROOM actor diagram defines the internal structure
as well as the external interfaces of a single component
(class), which is called actor in [22] or capsule in [23].
The interfaces of different components, so-called ports,
are bound to each other via binary connectors. Therefore,
ROOM uses a variant of the “component-port-connector”
model, i.e. allows for the definition of component archi-
tectures as discussed in [24] or in [7]. The ROOM model
consists of

� Components: A component or actor can be any
element that performs some kind of computation. An
actor class declaration describes the internal structure,
the external interface, and the behavior of all its
instances.

� Ports: A set of named ports defines the interface of
a class of actors. Ports are the places where actors
offer or require certain services. The primary commu-
nication form in ROOM is sending of asynchronous
signals (messages) through these ports. Ports are
bidirectional, allowing signal flow in both ways.

� Protocols: A protocol defines the permissible set
of signals which are sent forth and back between
two connected components. Any port (small black
rectangle) associated with a given protocol sends the
out-signals of its protocol and receives its in-signals.

� Conjugated Ports: Ports can be conjugated with
respect to their associated protocols. A conjugated
port (small white rectangle) receives the out-signals
of its protocol and sends its in-signals.

� Connectors: A connector establishes a connection
between two ports. It binds a port of one component
to a conjugated port of another component with a
compatible (the same) associated protocol.

Figure 1 shows one example of a ROOM actor diagram
taken from [22]. It declares the main actor class PBX
of a Private Branch eXchange system from the private
telephone network area.

*

*Admin
Handler

Call

call

tel

admin

admin tel

Handler
Telephone

PBX

Figure 1: The PBX System (cf. page 428 in [22])

Any instance of this class has one admin port and an
unrestricted number of tel ports (the number of these ports
varies at runtime). Furthermore, it contains a single in-
stance of an AdminHandler actor as well as a dynamically
changing number of TelephoneHandler and Call actor
instances (shadowed boxes indicate multiple instances of
components or ports).

Each TelephoneHandler actor has a connection to a
separate tel port of the main PBX class, the admin port
of the unique AdminHandler actor, and a connection to
(at most) one tel port of a Call actor. The additional
constraint that a single Call actor instance should be con-
nected with two TelephonHandler actors is not modeled
here.

Finally note that ROOM makes a clear separation be-
tween the declaration of an actor class and a reference
to another actor class. Consider the actor diagram of
Figure 1 with its actor class references AdminHandler,
TelephoneHandler, and Call. It denotes a composition
relationship between the actor class PBX on one hand and
the actor classes AdminHandler, TelephoneHandler, and
Call on the other hand. Furthermore, it offers additional
means for information hiding, which are discussed in more
details in Section 4.

3 UML + ROOM - The User’s View

The integration of ROOM actor diagrams with UML has
to be studied on several levels. First of all it is necessary to
adapt the notation for actors, ports, and connections such
that it respects the notational conventions of UML. Second,
all required new language elements have to be integrated
with the UML meta model, which defines the syntax of
UML as well as part of its static semantics. Third, a precise
definition of the extended language’s dynamic semantics
needs to be defined.

Within this section we will present a new proposal of
how to extend the UML notation. This proposal is related
to the “component-port-connector” notation of Catalysis
presented in [7]. We believe that our proposal offers a
clearer representation of ports and conjugated ports and a
clarification of the representation of ports in UML.

In the following section we will show more precisely
how the various elements of ROOM actor diagrams are
related to the UML meta model. For sake of readability
we will use a case by case translation of (proto-)typical
ROOM actor diagrams into standard UML diagrams for
this purpose. The last point mentioned above, the extended
UML language’s dynamic semantics definition, will not be
addressed here, partly due to the fact that even standard
UML does still not have a commonly accepted precisely
defined semantics for the involved diagram types (cf.
[4, 9, 21] for a discussion of this topic).

ROOM actor diagrams cannot be incorporated into
UML without making first the decision whether they are
merely added as another new diagram type or whether it
is possible to regard them as an extension of an already
existing diagram type. First of all UML’s component
diagrams seem to be the natural candidate for this purpose,
but have to be rejected for the following reasons: the
decomposition of a system into its components is a high
level logical design process, whereas all publications about
UML insist on the fact that component and deployment
diagrams should be used for modeling a software system’s
physical layout.

Another obvious solution, the addition of a new diagram
type, which plays a similar role as the good old data flow
diagrams of OMT [19], is rather infeasible, too; in this
case mainly due to political reasons. Almost all people
involved in the development of UML agree on the fact
that UML offers already too many types of diagrams and
should not be extended by adding yet another diagram
type. Furthermore, data flow diagrams of OMT were
and are considered useless by a large fraction of the OO
community. We believe that the lack of success of data
flow diagrams in OMT was mainly caused by the fact that
they were not properly integrated with class diagrams. It
may, therefore, be worth-while to reconsider this point, e.g.
based on the experiences with object-oriented data flow
diagrams in the visual programming language Prograph
[6].

A third possibility, promoted by some leading devel-
opers of UML and ROOM, is presented in [23]: the
extension of existing UML diagrams, namely the collabo-
ration diagrams. Although, extension of existing diagrams
increases the complexity of UML, it seems a politically
more acceptable solution than introducing a new kind of
diagrams.

Using collaboration diagrams as target for the mapping
of ROOM actor diagrams was probably chosen because
collaboration diagrams use class roles as their basic el-
ements. From a superficial point of view class roles of
UML are similar to actor class references of ROOM. They
possess an optional (role) name and are associated with
a class declaration. Furthermore, a single diagram may
contain different class role instances which belong to the
same class.

In our opinion class roles and actor class references
as well as actor diagrams and collaboration diagrams are
different things. An actor diagram presents a static view
of the internal details of an actor class. More precisely, it
defines structural constraints and possible communication
paths for all instances of the regarded class valid during
their whole lifetime. A collaboration diagram on the other
hand deals with the dynamic behavior of a set of related
class instances. It defines a possible configuration of some
class instances at a certain point of time and uses this
configuration to explain their runtime behavior through
examples. Therefore, a collaboration diagram does not
faithfully represent the static aspects of an actor diagram.

Furthermore, actor diagrams deal with the maximal
configuration of the structure of a system and with the
possible paths of communications within that structure,
whereas a collaboration shows one possible interaction
behavior. In particular one collaboration diagram describes
a behavioral pattern, whereas in ROOM this is achieved in
combination with the ROOM StateCharts.

As a consequence, explaining actor diagrams by defin-
ing their relationship to collaboration diagrams does not
explain actor diagrams adequately.

However, this situation can be improved by treating
ROOM actor diagrams as an extension of UML class
diagrams. We believe this to be the more natural approach,
which respects the static class-level properties of ROOM
actor diagrams that have been neglected in the mapping
provided in [23].

The following Section 4 sketches how to translate any
ROOM actor diagram into an almost equivalent standard
UML class diagram. As we will see, only quite a few
properties, namely the binding of ports are not represented
adequately. Fortunately, these binding are represented in
collaboration diagrams, such that ROOM actor diagrams
are fully explained using both mappings. We also demon-
strate the alternative – but somewhat less readable – use of
OCL constraints to denote bindings.

The purpose of the remainder of this section is
to present an extended class diagram notation for
“component-port-connector” architectures which is more
compact and readable than the translation of ROOM actor
diagrams into UML class diagrams presented in the follow-

C

BA
P

Q

Figure 2: Simple ROOM Actor Diagram

ing section. We furthermore start to discuss the mapping
into standard UML notation. The proposed extension
reflects the notation, the developers should use. The
internal view presented in Section 4 serves as semantics
definition and is mainly useful for tool implementation
purposes.

Let us start with the rather straightforward translation
of the actor diagram of Figure 2 into the standard UML
class diagram of Figure 3. This translation works exactly
if the involved protocols are unidirectional, i.e. if P and
Q require that C propagates signals to A and that A sends
signals to B but not the other way round. In this case
any signal may be regarded as an operation of an interface
declaration in UML: C implements the interface Q (denoted
as a small circle — a “lollipop” — attached to the class)
and uses the Q interface implemented by A, whereas A
needs the P interface realized by actor B. The component-
subcomponent relationship between C on one hand and
A and B on the other hand is modeled as a composition
association of UML, a straight line decorated with a black
diamond.

A B

Q

P

Q

C

Figure 3: Simple Translation of Figure 2 into a UML Class
Diagram

This straightforward translation scheme breaks down
if an actor has several ports of the same type or if a
bidirectional protocol is used, where signals are sent in
both directions along a single connection line (instead of
using two unidirectional connections for this purpose).

Furthermore, ROOM already resolved the asymmetry sit-
uation resulting from the fact that export interfaces of
classes have an explicit representation as small white
lollipops attached to their class boxes, whereas there are
no equivalent means for the definition of required but not
yet resolved imports. Following the philosophy of ROOM
we suggest the introduction of import interfaces as black
lollipops, i.e. as conjugated export interfaces. Pure export
interfaces always receive messages (signals) implemented
by their classes, whereas pure import interfaces always
send messages (signals), which are needed to implement
the associated class (cf. Figure 4).

Please note that the newly introduced import interfaces
are similar to so-called component sockets of Catalysis,
whereas the original UML (export) interfaces play the role
of component plugs [7]. Both import and export interfaces
are necessary prerequisites for the definition of reusable
components with “loose” ends, i.e. with unresolved import
relationships. These components implement a certain set
of services based on another set of services offered by
a not yet determined number of lower level components.
Combined with the usage of UML’s object constraint
language, import interfaces offer thereby about the same
functionality as the formal import parts in the module
concepts of algebraic specification languages [8, 5].

To handle more sophisticated cases, we introduce inter-
face objects that serve as ports and bidirectional dependen-
cies between interfaces to handle bidirectional protocols,
and several ports of the same type are attached to a single
actor class. In this case, component interfaces have to be
modeled as objects in their own right, which are allowed
to send and to receive signals (messages). Interestingly
mapping ports to objects is exactly what the ROOM im-
plementation does already.

Figure 5 sketches how an UML-like notation of these
concepts might look like. It uses nesting of boxes — as
suggested in [7] — for defining an aggregation relationship
between the enclosing actor class C and the enclosed actor
class references a, b1, and b2. The class box inscriptions of
the form b1:B and b2:B have to be read as “an instance of
class C contains one instance of class B with name b1 and
another instance of class B with name b2 as components”

A PP B

BA
P

Figure 4: A new Import Interface Notation for UML

a is-a A

P

P
t2

t1

C

b1 is-a B

b2 is-a B

C

a : A

b1 : B

b2 : Bt2:P :P

:Pt1:P

Figure 5: Interface Objects and Bidirectional Dependen-
cies

(in contrast to UML collaboration diagrams, where a box
inscription of the form b1:B expresses just the fact that an
instance of class B plays the role b1 at a certain point of
time).

The two ports t1 and t2 of the actor class reference a
have the same conjugated protocol type P. They cannot be
translated into (conjugated) UML class interfaces, but have
to be modeled as a new kind of instantiable UML classifiers
(e.g. as UML classes with the stereotype <<port>> or
<<conjugated-port>> as suggested in [23]). Normal
interface objects (ports) are denoted as white ellipses
with an optional name followed by a “:”, and a protocol
type definition as inscription; conjugated interface objects
(ports) are denoted as black ellipses. The following section
contains a more detailed description how this extension can
be mapped to standard UML constructs.

It is a matter of debate whether a dashed line with arrow
heads at both ends should be used to model a bidirectional
connection (as used in Figure 5) or whether a solid line
would be more appropriate. In the first case the similarity
between bidirectional connections and dependencies be-
tween classes and interfaces is emphasized, in the latter
case the similarity between connections and regular asso-
ciations between classes would be emphasized.

4 UML + ROOM - The Internal
View

In this section we examine the technical integration of
ROOM structure diagrams with the existing UML dia-
grams. There are a variety of different techniques which
may be used for this purpose. The route we will follow is
to provide a mapping of the new notation to the existing
UML notations. As known from mathematics – and as
discussed in Section 3 – a mapping can be incomplete in
the sense that it does not map all aspects of the source
notation properly. In this paper, we informally introduce
the mapping through discussing how the concepts are
mapped. A formal mapping would include the mapping
of ROOM’s meta model to the UML meta model. We
simply provide some examples that illustrate the result of
the mapping.

Therefore, in this section we map the ROOM structure
diagram elements systematically to UML diagrams. Please
note that the provided mapping can be used in two ways:

1. the mapping serves to understand the semantic inte-
gration of ROOM and UML, and

2. the mapping can be implemented in a tool to actually
map the user friendly version of the ROOM structure
diagrams to UML diagrams.

4.1 Actor classes and actor references

Actor classes in ROOM have a similar role as classes
do in the UML. An actor class defines the structure and
behavior for its instances, the actors. The structure within
an actor class is defined by composing multiple named
actor references and binding their ports as shown in Figure
1. It is therefore obvious to map a ROOM actor class to an
UML class. To keep track of its origin and to add special
properties, we decorate the generated UML class with a
special stereo type <<capsule>> as proposed in [23].

� Actor (capsule) classes are mapped to UML classes.

� Actors are mapped to UML objects

The containment relation among actors can directly be
mapped to UML aggregation and composition. ROOM
defines several kinds of containment. A commonly used
containment in ROOM is that of fixed actors. These
subactors are created when the enclosing actor is created
and will be deleted when the actor is deleted. This maps
clearly to UML class composition.

When multiple actors of the same class are required,
it is allowed to define several actors and ports. But this
keeps the number of instances fixed per default and thus

the multiplicity of the composition in UML is also fixed.
In order to allow varying numbers of instances, ROOM
provides optional subactors. Optional subactors reside in
the scope of a actor and the replication factor n of an
optional actor reference indicates the maximum number of
subcapsules that can exist during runtime. The result is a
multiplicity of 0...n. The TelephoneHandler in Figure 1
shows such a situation, where even the number of instances
is not limited at all.

Besides containment that maps to composition, ROOM
also knows the import of actors, a concept which has
no relationships to import dependencies of module inter-
connection languages. Import places of actor diagrams
are placeholders (slots), where already existing actors of
related actor diagrams may be inserted (and removed)
at runtime. As a consequence, actor instances may be
(temporarily) shared subcomponents of different diagrams.
A subactor instance can be shared between multiple actors,
when a user defines a special equivalence relation between
actor references. The shared subactor is deleted when no
parent actor exists any more.

� The containment of fixed and optional subactors is
mapped to UML composition.

� The containment of imported actors or shared actors
is mapped to UML aggregation.

� Replication factors are mapped to a fixed and maxi-
mum multiplicity.

Figure 6 shows the effect of mapping different contain-
ment types.

4.2 Protocols and ports

Actors communicate by sending and receiving messages
through ports to other actors. An actor may may have
multiple external and internal ports, as e.g. PBX in Figure
1. Ports are bidirectional, allowing messages to send and to
receive. An actor explicitly defines the wiring of the ports
through their bindings. The valid interactions between two
connected ports is defined in a ROOM protocol. A pro-
tocol defines several (the ROOM implementation actually
supports only protocols with exactly two) roles. As the two
roles are inverse to each other, they can be derived from
each other by conjugation. Conjugating a port P, denoted
as P˜, is essentially to inverse its in/out directions. An
actor may contain multiple ports that implement the same
protocol.

Ports are similar to interface signatures in UML. When a
class implements an interface we know that it understands
all messages contained in the interface. But an UML inter-
face contains only incoming messages. We therefore map

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

<<capsule>>

<<capsule>>

<<capsule>>

<<capsule>>

1

3

0..5

0..*

replication factor

two fixed actors of the same actor class

optional actor

imported actor

A

b1 is-a B c is-a C

d is-a Db2 is-a B

3

*

5

DB

C

A

b1

d

c

b2

Figure 6: Mapping Different Types of Containment

one role into two interfaces, one being inward directed, one
being outward directed. We map all incoming messages to
one UML interface, called Pin, and all outgoing messages
to a second interface, called Pout . We use a stereotype
<<role>> to mark the purpose of these interfaces. Please
note that it is possible for different protocols to accidentally
share interfaces; in an optimization step sharing can be
used to reduce the number of actually existing classes and
interfaces.

To summarize, a port that implements a role of the
protocol P is mapped to an object

� of a class that implements the Pin interface,

� is part of the actor using the port,

� and depends on an Pout interface.

Ports realizing the conjugated role can obviously be
implemented using the same interfaces the other way
round.

ROOM distinguishes between relay ports and end ports.
A relay port connects a subactor to the environment. Mes-
sages are delegated from outside to the subactor and vice
versa. End ports are linked to the internal state machine

r s

port conjugated port

implements

depends on

interface

c is-a Cb is-a B P

<<role>>

1

P

r
1
s

in

<<role>>

Pout

<<port>>

P
<<port>>

P˜
<<capsule>>

C
<<capsule>>

B

Figure 7: Mapping Ports and Protocols

of a ROOM actor. We can regard the state machine as a
special subactor, thus treating end ports like relay ports to
the state machine’s subactor.

To ensure proper encapsulation both kinds of ports
(relay and end ports) must provide the same interface for
an actor’s environment. However, if a port is a relay port,
then it also implements the interface that belongs to the
conjugated protocol. Thus looking either from inside or
outside to a port, two different protocols can be seen. If
desired, the two ports of the port can be marked with the
stereotypes <<relay>> or <<endport>> to keep track of
the origin of the ports.

So far we have discussed the principle of the mapping.
However, if actors are deeply nested, then it is very impor-
tant to make optimizations versus the chain of relay ports
involved. Instead of forwarding messages through chains
of relay ports, the static connection of ports allows the
implementation to shortcircuit directly from the sender to
the receiving end port. This and other optimizations apply
when cutting code from the diagrams and need therefore
not be visible to the developer like compiler optimizations
are not visible to the programmer.

Figure 7 shows an example for the mapping of ports.
Figure 8 shows a more complex example, where repli-

cated ports and hierarchically nested actors are mapped.

4.3 Binding by connectors

Actor diagrams connect ports of the just declared actor
class and its nested actor references. These connections
are neither association instances (links) nor association
declarations in the sense of UML. There is even a small
difference between the links (link roles) of UML collabora-
tion diagrams and the connections of actor diagrams. The
actor diagram connections are valid for the distinguished
subcomponents of all instances of the regarded actor class;
in our view they are an intrinsic part of the static structure

x

r

replicated relay port

b is-a B

A P

<<role>>

1

5

P
r

b

in

<<role>>

Pout

<<port>>

P
<<capsule>>

B

<<capsule>>

A 5
x <<port>>

5

P˜

Figure 8: Mapping Replicated Relay Ports

definition of the regarded actor class. Collaboration dia-
gram links, on the other hand, usually only have to exist
between a set of regarded class instances if a specified
sequence of operations is executed.

Regarding Figure 7 we can represent the connection
between both ports as an association between them, thus
implementing the dependencies shown in the mapping.
However, UML [20] does not clarify the meaning of an
association between elements of an aggregation. Are they
allowed to build links between aggregation instances or
only within an aggregation instance? Several non standard
UML solutions have been discussed, but all have their
limitations, especially if several instances of the same port
are connected to the actor.

Therefore, collaboration diagrams as discussed in [23]
or even simple object diagrams are adequate for this
purpose. For each actor diagram, the resulting actor
class should be attached with an appropriate object or
collaboration diagram.

Another feasible way is the use of the object constraint
language in addition to associations, as it has a good
notion of navigating through paths. OCL helps to ensure
encapsulation of associations. In the example in Figure 9,
the following OCL constraint prevents ports of subactors to
be connected illegally to ports not in the actor, if we assume
that ports establish their connection through an association
(or a derived query), called connection:

self:A
self.c != self.d
self.b.r.connection = self.c.x
self.b.s.connection = self.d.x
self.c.x.connection = self.b.r

x

r

s xb is-a B d is-a C

A
P

P

<<role>>1

1 P

r
b

1d

in

<<role>>

Pout

<<port>>

P
<<capsule>>

B

<<capsule>>

C

<<capsule>>

A

1
s

1
x <<port>>

1c

c is-a C

P˜

Figure 9: Mapping bindings into UML

self.d.x.connection = self.b.s

The first line demands that actors c and d are not the
same object – something which is ensured in the actor
diagram, but not in the UML diagram. The next two lines
state that the port r from actor b is actually connected to
port x from component c, resp. port s to component port
d.x. The last two lines establish the connection from the
other direction, and are according to the bidirectionality of
associations in UML redundant.

5 Related Work

Wright [1], Darwin [17] and Rapide [12] are well
known ADLs: they are designed to enable the construction
of a software system out of basic components. Like
ROOM these languages distinguish between the services a
component (or capsule) provides and those it requires. All
required services have to be satisfied by other components
offering this service.

Wright focuses mainly on the treatment of connectors
as first class citizens, which for example allows special-
ization between connectors. The language allows for the
connection of ports (being part of component instances)
via connector. The interactions possible at a connector can
be defined using a formal language (CSP).

The Darwin language is developed by the distributed
systems group at the Imperial College in the group of
Magee and Kramer.

“... Complex components are constructed by
composing in parallel more elementary compo-
nents and as a result, the overall structure of a
system is described as a hierarchical composition
of primitive components which at execution time
may be located on distributed computers.” [11]

A strength of Darwin is the ability to specify component
bindings which result in an infinite number of components.
This is made possible by a mechanism that instantiates a
component “on demand” in the moment the signal has been
sent to it. Darwin owns no abstractions for protocols and
ports. It lacks also inheritance between components.

Like UML, Rapide is not a single language, but a
collection of (in ideal case) complementary languages. In
our context, the interesting languages are type language,
describing the interface of components also architecture
language which captures bindings between components.
There is the possibility to distinguish synchronous and
asynchronous interaction points using a component, called
functions and actions in a interface definition, respectively.
Behavior can be defined by means of optional statements
written in an event-pattern language.

The integration of ROOM into UML presented here
is not comparable with the mapping of ADLs into UML
as done in [18]. In the first case the class diagrams are
extended and smoothly integrated with the rest of the UML
both notation and meta model level. In the later case certain
aspects of the regarded ADL are translated into UML and
it is assumed that the user still works with specific ADL
tools. The UML then has the task of some kind of common
repository.

ROOM as well as the discussed combination with UML
possesses all essential features of an ADL as characterized
in [13]. Actors or capsules play the role of ADL com-
ponents with typed ports as interfaces. Each component
belongs to a specific class which determines the com-
ponents interface, its internal structure and it’s behavior.
For the later purpose, UML state charts combined with
a standard programming language offer a partly visual,
partly textual notation. These behavior descriptions are
executable and possess already a (semi) formal semantic
definition. Furthermore the envisaged combination of
UML and ROOM provides extensive support for interface
sub-typing as well as implementation inheritance, a topic
which is out of the scope of this paper. The connectors
of ROOM actor diagrams are second-order objects without
any associated type as the case with most ADLs. As a
consequence a ROOM connector inherits all its properties
from the ports being attached to and may not be refined.

 / b : B

 / c : C

 / d : C

r

s

x

x

Figure 10: A UML-RT actor diagram

B

r
s

C

x

A

P

b cd

r

<<port>>

s

<<port>>

x <<port>>

Figure 11: How UML-RT maps capsules to classes

The extensive tool support available for ROOM and
UML makes the proposed combination practically useful
and the proposed integration could be accomplished rela-
tively easy by tool builders.

Since the end of April the CASE tool Rose RT has been
available. Surprisingly, the implementation of UML-RT is,
in our opinion, closer to the proposal made here then to the
proposal of the white paper [23].

Figure 11 contains the UML-RT representation of a
collaboration diagram of Figure 10 in form of a class
diagram. The most interesting difference is the treatment
of ports not as first-order elements, but as links to a
protocol.

This leads to a smaller class diagram, but removes
some of the flexibility available when ports can be passed
around. Furthermore, the UML-RT treatment does not
distinguish a protocol and its conjugated protocol through
different interfaces and therefore looses type information.

On the whole we believe our approach has some advan-
tages: It contains a smoother transition from the interface
lollipop notation to the proposed port notation. Also it
assures a better integration of actor diagrams with class
diagrams and separates clearly between actor diagrams and
collaboration diagrams.

6 Conclusion and Future Work

Based on our evaluation of UML (version 1.4) as a soft-
ware architecture description language, we found that a
diagram type needed for the description of component-
based architectures is missing. Luckily, proposals have
already been made to integrate the actor diagrams of
the component description language ROOM into a future
version of UML.

The efforts documented in [23] to map ROOM actor
diagrams to UML collaboration diagrams have been found
insufficient to deal with the static structural properties of
actor classes. We, therefore, provide in this paper a com-
plementary mapping to UML class diagrams, which clari-
fies the role of ROOM actor diagrams as a combination of
some characteristics of UML class and UML collaboration
diagrams. Moreover, the mapping shows that ROOM actor
diagrams are — in our opinion — more closely related to
UML class diagrams than to UML collaboration diagrams.
As a consequence, we suggested an extension of the UML
class diagram notation which allows the component-based
description of software architectures. This extension uses
the UML lollipop notation for component interfaces (ports)
and nesting of boxes (instead of diamond adornments of as-
socations) for the declaration of composition relationships.

Based on these efforts, refinement techniques to hier-
archically decompose and restructure actor diagrams can
be adapted from a similar notation in [15, 16] to the UML
version of actor class diagrams introduced in this paper.

Another direction of our future work is to adapt this
extension of UML with ROOM-concepts to the area of
automotive systems. It is expected that in the field of
embedded systems, and especially of car control systems,
which are not as highly dynamic as business systems tend
to be, actor diagrams are of great value and perhaps more
important than class diagrams in their current form.

Furthermore, we are planning to introduce a small
set of different (stereo-)types for ports and connectors.
Examples for these types could be composite ports, event
ports, broadcasting ports, buffered channels etc. The
goal is to characterize the behavioral properties of the
system and its dynamic structure in more detail in its
design phase. Finally, the increasing use of spontaneous
proximity networking requires new notations to capture

dynamic connection structures, physical locations, and
mobile actors.

Acknowledgments

The work was partially supported by the Bayerische
Forschungsstiftung under the FORSOFT research consor-
tium and the DFG under the Leibnizpreis program.

References

[1] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Transactions on Software Engineering
and Methodology, July 1997.

[2] L. Bass, P. Clements, and R. Kazman. Software Architec-
ture in Practice. Addison Wesley, Reading, Mass., 1998.

[3] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Mod-
eling Language User Guide. Addison Wesley, Reading,
Mass., 1999.

[4] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech,
B. Rumpe, and V. Thurner. Towards a Formalization
of the Unified Modeling Language. In Proceedings of
ECOOP’97. Springer Verlag, LNCS, 1997.

[5] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Huß-
mann, D. Nazareth, F. Regensburger, O. Slotosch, and
K. Stølen. The Requirement and Design Specification
Language SPECTRUM, An Informal Introduction, Version
1.0, Part 1. Technical Report TUM-I9312, Technische
Universität München, 1993.

[6] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph.
In Visual Object-Oriented Programming: Concepts and
Environments, pages 45–66. 1995.

[7] D. F. D’Souza and A. C. Wills. Objects, Components, and
Frameworks with UML – The Catalysis Approach. Addison
Wesley, Reading, Mass., 1999.

[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specifi-
cations I. Springer Verlag, Berlin, 1985.

[9] R. France, A. Evans, K. Lano, and B. Rumpe. The UML
as a formal modeling notation. Computer Standards &
Interfaces, 19:325–334, 1998.

[10] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming, 8:231–274,
1987.

[11] J. Kramer, J. Magee, and A. Finkelstein. A Constructive
Approach to the Design of Distributed Systems. In 10th
Internat. Conf. on Distributed Computing Systems, Paris,
pages 580–587, June 1990.

[12] D. C. Luckham and J. Vera. An Event-Based Architecture
Definition Language. IEEE Transactions on Software
Engineering, 21(9):717–734, Sept. 1995.

[13] N. Medvidovic. A classification and comparison frame-
work for software architecture description languages. Tech-
nical Report UCI-ICS-97-02, Department of Information
and Computer Science, University of California, Irvine, feb
1996.

[14] M. Nagl. Softwaretechnik: Methodisches Programmieren
im Großen. Springer-Verlag, 1990.

[15] J. Philipps and B. Rumpe. Refinement of Information Flow
Architectures. In M. Hinchey, editor, ICFEM’97. IEEE CS
Press, 1997.

[16] J. Philipps and B. Rumpe. Stepwise Refinement of Data
Flow Architectures. In M. Broy, E. Denert, K. Renzel, and
M. Schmidt, editors, Software Architectures and Design
Patterns in Business Applications. Technische Universität
München, TUM-I9746, 1997.

[17] M. Radestock and S. Eisenbach. Formalizing System
Structure. In Int. Workshop on Software Specification
and Design, pages 95–104. IEEE Computer Society Press,
1996.

[18] J. E. Robbins, N. Medvidovic, D. F. Redmiles, , and
D. S. Rosenblum. Integrating Architecture Description
Languages with a Standard Design Method. In 20th Inter-
national Conference on Software Engineering(ICSE’98),
Japan, pages 209–218, Apr. 1998.

[19] J. Rumbaugh, M. Blaha, W. P. F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[20] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual. Addison Wesley,
Reading, Mass., 1999.

[21] B. Rumpe. A Note on Semantics (with an Emphasis on
UML). In Second ECOOP Workshop on Precise Behav-
ioral Semantics. Technische Universität München, TUM-
I9813, 1998.

[22] B. Selic, G. Gullekson, and P. Ward. Real-Time Object-
Oriented Modeling. John Wiley, New York, 1994.

[23] B. Selic and J. Rumbaugh. Using UML for Mod-
eling Complex Real-Time Systems. ObjecTime Lim-
ited, 340 March Rd., Kanata, Ontario, Canada, 1998.
http://www.objectime.com/otl/technical/umlrt.html.

[24] M. Shaw and D. Garlan. Software Architecture - Perspec-
tives on an Emerging Discipline. Prentice Hall, Upper
Saddle River, New Jersey, 1996.

[25] J. Warmer and A. Kleppe. The Object Constraint Lan-
guage. Addison Wesley, Reading, Mass., 1998.

