
A. Evans

Dept. of Computing, University of York
andye@cs.york.ac.uk

Rigorous Development in UML

Abstract. The Uni�ed Modelling Language (UML) is becoming the de
facto industry standard notation for object-oriented analysis and design.
In this paper we propose a development process using UML and other
notations which supports formal analysis and veri�cation, so enabling
the notation to be used for highly critical systems.

We will illustrate the development process using a small example of a
tra�c light control system.1

1 Introduction

The UML [12] combines and extends elements of previous OO notations such
as OMT, Booch and Objectory. In contrast to these methods, its notations are
precisely de�ned using the Object Constraint Language (OCL) and a meta-
model to express the allowed forms of diagrams and their properties. In previous
papers we have shown how the semantic meaning of some UML diagrams can also
be precisely de�ned [8, 7, 3]. This semantics supports the use of transformational

development: the re�nement of abstract models towards concrete models, using
design steps which are known to be correct with respect to the semantics (all
properties of the abstract model remain valid in the re�ned model).

For highly critical applications (systems where the consequence of incorrect
functioning may include loss of life or severe �nancial loss), it is important that
the development process used can help detect and eliminate errors. The process
should in particular support the veri�cation of re�ned models against abstract
models by comparing their semantics.

A number of problems have been recognised with the implicit method for
using UML [13], for example:

1. Use cases have been extended from being simply a requirements elicitation
tool, to being a notation which (via the extends and uses dependencies
between use cases) can describe quite complex control ow. Premature and
inappropriate design can therefore result.

2. Statecharts are a design-oriented notation not ideally suited for abstract
behaviour speci�cation, and are used to describe the behaviour of individual
objects, instead of system-level modelling.

We attempt to remedy the �rst problem by not allowing dependencies be-
tween use cases, and by using Yourdon-style Data and Control-ow Diagrams

1 This work was partly supported by a grant from the Laboraturio de Methodos For-
mais of the Departamento de Informatica of Ponti�cia Universidade Catolica do Rio
de Janeiro.

(DCFD's) [14] to describe the overall context of data and control ows between
the system and the external agents and devices it interacts with. We deal with
the second problem by using operation schemas which describe in an abstract
way the response of the system or an object to an input event or request.

Our proposed process can be summarised as follows:

1. Requirements { modelled using Yourdon context diagrams and/or UML use
case diagrams (without dependencies between use cases).

2. Essential Speci�cation { described using UML class diagrams, operation
schemas (from Fusion and Octopus), statecharts and sequence diagrams.

3. Design { modelled using UML class diagrams, statecharts, sequence diagrams
and collaboration diagrams.

In order to support veri�cation, a number of well-de�ned relationships be-
tween these models can be given:

1. Each input event/message on the system context diagram should have a
system response described by an operation schema.

2. The e�ect described by an operation schema for an event e must be estab-
lished by the completed response sequence to e described in design level
statecharts, that is, by the transitions speci�ed for e and the set of their
generated events and transitions.

3. Design level class diagrams should satisfy all the properties asserted in the
speci�cation level class diagrams.

4. Sequence diagrams should be consistent with collaboration diagrams: the
structure of object inter-calling should be the same.

5. Collaboration diagrams should be consistent with statecharts: messages sent
by an object in response to a message m should correspond to events gen-
erated from transitions for m in the statechart of the object.

Of these, 2 and 3 are formal veri�cation steps, because class diagrams, operation
schemas and statecharts have precise formal semantics in our formalisation. 1, 4
and 5 are syntactic checks which could be implemented in CASE tools.

2 Semantics and Veri�cation Rules

A mathematical semantic representation of UML models can be given in terms
of theories in extended �rst-order set theory as in the semantics presented for
Syntropy in [2] and VDM++ in [10]. In order to reason about real-time spec-
i�cations the more general version, Real-time Action Logic (RAL) [10] can be
used.

A RAL theory has the form:

theory Name

types local type symbols

attributes time-varying data, representing instance or class variables

actions actions which may a�ect the data, such as operations, statechart tran-

sitions and methods

axioms logical properties and constraints between the theory elements.

Theories can be used to represent classes, instances, associations and general
submodels of a UML model. These models are therefore taken as speci�cations:
they describe the features and properties which should be supported by any
implementation that satis�es the model. In terms of the semantics, theory S

satis�es theory T if there is an interpretation � of the symbols of T into those
of S under which every property of T holds:

S ` �(')

for every theorem ' of T. A design modelD with theory S is a correct re�nement
of abstract model C with theory T if S satis�es T.

In addition to standard mathematical notation such as F for \set of �nite
sets of", etc, RAL theories can use the following notations:

1. For each classi�er or state X there is an attribute X : F(X) denoting the set
of existing instances of X.

2. If � is an action symbol, and P a predicate, then [�]P is a predicate which
means \every execution of � establishes P on termination", that is, P is a
postcondition of �.

3. For every action � there are functions "(�; i), #(�; i), (�; i) and !(�; i)
of i : N1 which denote the activation, termination, request send and request
arrival times, respectively, of the i-th invocation of �. These times are ordered
as:

 (�; i) � !(�; i) � "(�; i) � #(�; i)

Also

i � j) (�; i) � (�; j)

4. If � and � are actions, then � � � \� calls �" is de�ned to mean that

8 i : N1 � 9 j : N1 � "(�; i) = "(�; j) ^ #(�; i) = #(�; j)

Either Z or OCL notation could be used for axioms in theories, representing
the semantics or constraints of UML models. In [9] we de�ne a translation from
OCL into Z.

2.1 Object Models

A UML class C is represented as a theory of the form given in Figure 1. Each

[htbp]

theory �C

types C

attributes C : F(C)
self : C! C

att1 : C! T1

: : :

actions createC(c : C) fCg
killC(c : C) fCg
op1(c : C;x : X1) : Y1

: : :

axioms

8 c : C �

self(c) = c ^

[createC(c)](c 2 C) ^

[killC(c)](c 62 C)

Fig. 1. Theory of Class C

instance attribute atti : Ti of C gains an additional parameter of type C in the
class theory �C and similarly for operations2. Class attributes and actions do
not gain the additional C parameter as they are independent of any particular
instance. We can denote att(a) for attribute att of instance a by the standard
OO notation a:att, and similarly denote actions act(a;x) by a:act(x).

Similarly each association lr can be interpreted in a theory which contains an
attribute lr representing the current extent of the association (the set of pairs
in it) and actions add link and delete link to add and remove pairs (links)
from this set. Axioms de�ne the cardinality of the association ends and other
properties of the association. In particular, if ab is an association between classes
A and B, then ab � A�B, so membership of ab implies existence for elements
of a link.

3 Software Requirements

The system to be constructed in this case study is a controller for two pairs of
tra�c lights at a crossroads (Figure 2). Tra�c lights 1 and 3 must always show
the same indication, as must lights 2 and 4. Tra�c lights cycle from Green to

2 The class theory can be generated from a theory of a typical C instance by means
of an A-morphism [2].

Amber to Red on the `go red' cycle, and Red, Red and Amber, Green, on the
`go green' cycle. There is a delay of 3 seconds in the Red and Amber state, and
5 seconds in the Amber state. The safety requirement is that at least one pair
of tra�c lights must be red at any given time.

[htbp]

tl1
tl4

tl3 tl2

Fig. 2. Tra�c Light Layout

The system responds to a signal `change direction'. The response should be
to set the currently red signals to green, and the currently green signals to red.
TN is the type f1; 2; 3; 4g indexing tra�c lights. A Use Case diagram similar to

[htbp]

Operator

Sensors,

Traffic
Lights

Controller

direction
change_

go_red(TN), go_green(TN),
go_amber(TN),
go_red_amber(TN)

Fig. 3. Context Diagram of Tra�c Light Control System

Figure 3 could also be de�ned, with agents being the signal generator (operator
or sensors) and the tra�c light actuators.

4 Essential Speci�cation Level

We could model the system as a collection of two tra�c light pairs containing dis-
tinct tra�c lights tl1 and tl3, and tl2 and tl4. The abstract object model is given
in Figure 4. State is the enumerated type fgreen; amber; red;red amberg for
the illumination state of an individual tra�c light.

[htbp]

Controller Traffic Light

direction()
tlstate: State

go_red()2 2

change_

go_green()
go_amber()
go_red_

 amber()

Pair
Traffic Light

{ordered} {ordered}

Fig. 4. Abstract Object Model of Tra�c Light Controller

The behaviour of individual tra�c lights is given in Figure 5.

[htbp]

Red

Red and

Amber

Green

Amber

go_red_amber go_green

go_red go_amber

Traffic Light

Fig. 5. Statechart of Tra�c Light

A sequence diagramwould show that the tra�c lightmust be in the red amber

state for at least 3 seconds, and in the amber state for at least 5 seconds.
The invariant that the light pairs always illuminate the same lamps is ex-

pressed as an invariant of Tra�cLightPair:

Tra�cLightPair

self :tra�c light[1]:tlstate= self :tra�c light[2]:tlstate

where composite[i] denotes the i-th element in a composite list of objects.
The safety constraint is formalised as:

Controller

self :tra�c light pair[1]:tra�c light[1]:tlstate= red or

self :tra�c light pair[2]:tra�c light[1]:tlstate= red

We need to show that these invariants are maintained by operation schemas
and their implementations. In implementations we may require that the invari-
ants are also maintained at a �ner level of granularity than the complete exe-
cution of the operation (ie, they are true at certain points during the operation
execution) depending on the concurrency policy in force.

The operation schemas express the required e�ects of the operations listed
in the use cases of the system, without any decomposition into methods of in-
dividual objects. As we discuss in [11], this style of essential model description
is often clearer than the arti�cial localisation of such speci�cations used in Syn-
tropy essential models [1].

operation change direction

reads tra�c light pair, tra�c light

writes tlstate

precondition

(tl1:tlstate = green and tl3:tlstate = green and

tl2:tlstate = red and tl4:tlstate = red) or
(tl1:tlstate = red and tl3:tlstate = red and

tl2:tlstate = green and tl4:tlstate = green)

postcondition

if tl1:tlstate@pre = green

then

tl1:tlstate = red and tl2:tlstate = green and

tl3:tlstate = red and tl4:tlstate = green

else

if tl1:tlstate@pre = red

then

tl1:tlstate = green and tl2:tlstate = red and

tl3:tlstate = green and tl4:tlstate = red

tl1, etc are abbreviations for OCL expressions:

tl1 = tra�c light pair[1]:tra�c light[1]
tl2 = tra�c light pair[2]:tra�c light[1]
tl3 = tra�c light pair[1]:tra�c light[2]
tl4 = tra�c light pair[2]:tra�c light[2]

The notation e@pre denotes the value of e at activation of the operation. If
an attribute e does not occur in the writes list, then e can be used instead of
e@pre since the values of these expressions are then the same.

The precondition excludes the case that change direction occurs if
tl1:tlstate@pre 2 famber; red amberg, or other combinations other than a
`stable state'.

In this description, there is no detail concerning how these changes of state
are brought about. This is a concern of later design stages.

5 Design

We enhance the original object model to include additional operations for the
Tra�cLightPair class (Figure 6).

[htbp]

Controller Traffic Light
Pair

Traffic Light

direction()
tlstate: State

go_red()2 2

change_

go_green()
go_amber()
go_red_

 amber()

go_red()
go_green()

{ordered} {ordered}

Fig. 6. Re�ned Object Model of Tra�c Light Controller

[htbp]

1-3 green
Direction

Controller:

Direction
2-4 green

 traffic_light_pair[1].go_green

 traffic_light_pair[2].go_green

change_direction ^

change_direction ^
traffic_light_pair[1].go_red ^

traffic_light_pair[2].go_red ^

Fig. 7. Statechart of Controller

Statecharts for the controller and tra�c light pair classes are given in Figures
7 and 8.

Veri�cation that the reaction achieves the e�ect speci�ed in the operation
schema is direct. We have to check that each transition for change direction
in the controller statechart results in a poststate satisfying the postcondition
of the operation schema, under the assumption of the guard on the transition
(including the properties implied by membership of the source state) and the
precondition of the operation schema.

For example, in the case that direction 1-3 is initially green, the transition
for change direction in the Controller state machine terminates once the
transition for go red on the state machine for tra�c light pair[1] and then the
transition for go green on the state machine for tra�c light pair[2] terminate.
The �rst of these transitions results in a state where

tra�c light pair[1]:tra�c light[1]:tlstate = red

tra�c light pair[1]:tra�c light[2]:tlstate = red

tra�c light pair[2]:tra�c light[1]:tlstate = red

tra�c light pair[2]:tra�c light[2]:tlstate = red

and the second in the speci�ed state

tra�c light pair[1]:tra�c light[1]:tlstate = red

tra�c light pair[1]:tra�c light[2]:tlstate = red

tra�c light pair[2]:tra�c light[1]:tlstate = green

tra�c light pair[2]:tra�c light[2]:tlstate = green

as required. It can also be checked that each transition maintains the safety
invariant.

[htbp]

Red Green
Going

Traffic Light
Pair

Going
Red

after 5sec^
Green

traffic_light[2].go_red_amber
go_green ^ traffic_light[1].go_red_amber ^

traffic_light[1].go_green ^
traffic_light[2].go_green

after 3sec^

traffic_light[2].go_red

traffic_light[2].go_amber

traffic_light[1].go_red^

go_red ^ traffic_light[1].go_amber^

Fig. 8. Statechart of Tra�cLightPair

Finally, we need to check that the disjunction of the guards of all the transi-
tions for change direction is logically weaker than the operation schema pre-
condition, which is also the case.

6 The Role of Transformations

In a complex development UML models may have hundreds of classes and asso-
ciations. Any changes in the structure of this data from the abstract to re�ned
models must be carried out in a way which ensures the correctness of the concrete
system with respect to the abstract.

There are three kinds of transformation which have been developed:

1. Enhancement transformations, which simply extend a model with new model
elements. For example, adding new classes, invariants, attributes, operations
or associations to a class diagram, or introducing state nesting or new tran-
sitions to a statechart. Figure 6 represents an enhancement of Figure 4.

2. Reductive transformations, which allow a model expressed in the full UML
notation to be reexpressed in a sublanguage of this notation. For example,
`attening' of nested or concurrent states into equivalent sets of basic states,
or replacing association quali�ers by association classes [8].

These transformations can give a partial semantics of full UML models in
terms of a sublanguage of UML [4].

3. Re�nement transformations, which support re-writing models in ways which
lead from analysis to design and implementation.

The re�nement transformations on class diagrams we have veri�ed are: re-
�ning class invariants, rationalising disjoint associations, eliminating many-

many associations, relational composition of aggregations, specialising inter-

faces, strengthening association constraints, relational composition of selector

associations [9, 7], moving associations into aggregations [8].

The transformations on statecharts we have veri�ed are: source and target

splitting of transitions, abstracting events, strengthening transition guards,
eliminating transitions with false guards, collecting common transitions, re-
stricting source of transitions, introducing sequencing and iteration [9, 7].

These transformations also include the introduction of design patterns [6].

Enhancement transformations are complete in the sense that any UML class
diagram or statechart can be constructed by iterating such transformations on
an initially empty class diagram or statechart. They are also simple to verify,
since they result in a logically stronger theory (although possibly an inconsistent
theory).

Reductive transformations are complete in the sense that any model in the
full notation can be equivalently expressed in the subnotation by applying these
transformations. These transformations apply to statecharts without history en-
try nodes or deferred events, and reduce them to state machines without nested
or concurrent states: ie, in which all states are basic.

Re�nement transformations are not complete, in that it is possible to devise
re�nements which are not expressible as a combination of the transformations
given above. It should however be the case that these transformations cover a
wide range of those used in practice by developers.

Examples of transformations are given in the following sections and in [7, 8].

6.1 Class Models and Transformations

Consider an alternative analysis model of the tra�c light control system where
the Tra�cLightPair class is not de�ned during analysis, so that the controller
is directly related to the four separate tra�c light objects (Figure 9). For this

[htbp]

Controller Traffic Light

direction()
tlstate: State

go_red()

change_

go_green()
go_amber()
go_red_

 amber()

4

Fig. 9. Initial Class Diagram of Tra�c Light System

version the operation schema is the same as that in Section 4 except that tl1,
etc, abbreviate

tl1 = tra�c light[1]
tl2 = tra�c light[2]
tl3 = tra�c light[3]
tl4 = tra�c light[4]

and tra�c light pair is not in the reads list. This version of the system can
be re�ned to that presented in Section 4, using the following transformations.

Composing Aggregations Composition associations in UML represent a strong
`part of' relationship between a `whole' entity and several `part' entities. Such a
relationship should have several properties [12]:

1. One-many or one-one (a whole can have many parts, but a part cannot
belong to di�erent wholes at the same time): if whole objects a and a0 are
related to the same part b, then a = a0.

2. Deletion propagating: deleting the whole deletes its parts.

3. Transitive.

4. Irreexive

If we have a situation as in Figure 10, where two aggregations ab and bc exist
between di�erent classes A, B and C, which have no common objects, then the
relational composition ac = ab; bc of these two aggregations also satis�es the
properties 1 to 4 above if ab and bc do:

1. If (a; c); (a0; c) 2 ac, then there are b, b0 such that

(b; c); (b0; c) 2 bc ^ (a;b); (a0;b0) 2 ab

But then b = b0 by property 1 of bc, and so a = a0 by property 1 of ab.

2. killA(a) � killB(b) for each (a;b) 2 ab, and killB(b) � killC(c) for
each (b; c) 2 bc, so killA(a) � killC(c) for each (a; c) 2 ac, as required.

3. ab and bc are trivially transitive since there can be no pairs (x;y); (y; z) 2
ab, etc. Likewise ac is trivially transitive since C is disjoint from A.

4. Similarly ac is trivially irreexive.

[htbp]

*
A CB

*

*
A CB

*

*

{ ac = ab; bc }

Fig. 10. Transitivity of Composition Aggregations

If there are speci�c cardinalities 1 : n, 1 :m for ab and bc respectively, then
ac has cardinality 1 : (n �m).

In the case of the tra�c light system, we can use this transformation to
deduce that the model of Figure 4 re�nes the model of Figure 9.

6.2 Re�nement of Operation Schemas to Statecharts

If an operation schema de�nition for operation e has the form

precondition Case1 or Case2
if Case1@pre
then Post1
else

if Case2@pre
then Post2

where Post2) Case1, Post1) Case2 and : (Case1 ^ Case2), then this
is expressible as a binary state machine of the form of Figure 11. In general,

[htbp]

Case1 Case2

e/[Post1]

e/[Post2]

Fig. 11. Implementation of Operation Schema

if a system involves a �xed �nite number of objects (eg, objects representing
actuators or sensors in a reactive system) each of which has only �nitely many
states, then it is possible to mechanically produce a �nite state machine from
the set of its operation schemas. Such a �nite state machine may be extremely
large however, and need further abstraction before it can be used as a useful
analysis model.

The statechart of Figure 11 can then be further re�ned to replace postcondi-
tions [Post] by suitable sequencing of actions which ensure these postconditions.

In the case of the tra�c light control system, we could apply this transfor-
mation to the operation schema of Section 6.1 to obtain Figure 12 (tl1 denotes
tra�c light[1], etc).

6.3 State Machine Models and Transformations

Sequential Decomposition Sequential decomposition allows the introduction of
procedural control ow into a statechart description of a method. It can be used
in the step from a statechart to an activity diagram. Figure 13 shows a typical

[htbp]

Direction
1-3
Green

Direction
2-4
Green

change_direction^tl1.go_amber^tl3.go_amber^
wait(5)^tl1.go_red^tl3.go_red^tl2.go_red_amber^
tl4.go_red_amber^wait(3)^tl2.go_green^tl4.go_green

change_direction^tl2.go_amber^tl4.go_amber^wait(5)^
tl2.go_red^tl4.go_red^tl1.go_red_amber^
tl3.go_red_amber^wait(3)^tl1.go_green^tl3.go_green

Fig. 12. Abstract Controller Statechart

[htbp]

S T

e/x:=v^Act1^Act2

S TInt
e/x:=v^Act1 ^Act2

Fig. 13. Sequential Decomposition Example

example. Here, Int is a new state, with no other incident transitions. The theory
interpretation is that t1, the abstract transition for e from S, is mapped to t2; t3
where t2 is the concrete transition for e fromS, and t3 is the automatic transition
from Int.

If the original transition had labelling e=x := v a Act1 await(n) a Act2
where wait(n) indicates a delay of at least n time units, then the decomposed

version has instead the labelling after n aAct2 on transition t3.

Annealing A transformation involving re�nement of both class diagrams and
state machines is annealing [5]. This involves the replacement of a local attribute
of a class with a reference to an object, or the addition of an intermediate
reference between objects. In terms of dynamic models, a transition in a single
statechart is replaced by a succession of two transitions in separate statecharts,
one invoked by the other.

Figure 14 shows a typical case with two attributes.
In the tra�c light case study, an annealing step from the models given in

Section 6.1 and Figure 12 would introduce Tra�cLightPair objects and de�ne

[htbp]

S1 S2e/att1:=x2;
att2:=y2

att1=x1
att2=y1

att1=x2
att2=y2

C

att1: T
att2: S

e

C

att1: T
att2: S

D
obj

e
e1

S1 S2

att1=x1 att1=x2

e/att1:=x2^
obj.e1

att2=y1 att2=y2

e1/att2:=y2
T1 T2

Fig. 14. Annealing

the theory interpretation �:

tra�c light[1] 7�! tra�c light pair[1]:tra�c light[1]
tra�c light[2] 7�! tra�c light pair[2]:tra�c light[1]
tra�c light[3] 7�! tra�c light pair[1]:tra�c light[2]
tra�c light[4] 7�! tra�c light pair[2]:tra�c light[2]

This transformation is shown in Figure 15.Act1 is tl1:go amberatl3:go ambera

[htbp]

DirectionDirection
1-3
Green

2-4
Green

change_direction^Act3^Act4

change_direction^Act1^Act2

DirectionDirection
1-3
Green

2-4
Green

change_direction^tlp1.go_red^tlp2.go_green

change_direction^tlp2.go_red^tlp1.go_green

Green Red

Controller:

Traffic
Light

go_red^Act1’

Pair 1:
go_green^Act4’

Fig. 15. Annealing of Tra�c Light System

wait(5)atl1:go redatl3:go red, where tl1 = tra�c light[1],
tlp1 = tra�c light pair[1], etc., whilstAct10 isAct1 with tl1 = tra�c light[1],
tl3 = tra�c light[2].

Combining this with sequential decomposition of the tra�c light pair tran-
sitions shows that the design of Section 5 re�nes the version given in Section
6.1.

Conclusions

We have proposed a systematic development process using UML notations. The
steps of this process can be veri�ed, in principle, and make use of formally correct
transformations on UML models. We are currently working on tool support for
such a process, which should enable it to be trialed for use in an industrial
context.

References

1. S. Cook, J. Daniels, Designing Object Systems: Object-orientedModelling with Syn-

tropy, Prentice Hall, 1994.
2. J C Bicarregui, K C Lano, T S E Maibaum, Objects, Associations and Subsystems:

a hierarchical approach to encapsulation, ECOOP 97, LNCS, 1997.
3. A. Evans, R. France, K. Lano, B. Rumpe, Developing the UML as a formal mod-

elling language, UML 98 Conference, Mulhouse, France, 19 98.
4. M. Gogolla, M. Richters, Equivalence Rules for UML Class Diagrams, UML 98.
5. S. Goldsack, K. Lano, E. Durr, Invariants as Design Templates in Object-based

Systems, Workshop on Foundations of Component-based Systems, ESEC 97.
6. K. Lano, N. Malik, Reengineering Legacy Applications using Design Patterns,

STEP '97, IEEE Press, 1997.
7. K. Lano, J. Bicarregui, Semantics and Transformations for UML Models, UML 98

Conference, Mulhouse, France, 1998.
8. K. Lano, J. Bicarregui, Formalising the UML in Structured Temporal Theories,

ECOOP 98 Workshop on Behavioural Semantics, Technical Report TUM-I9813,
Technische Universitat Muchen, 1998.

9. K. Lano, J. Bicarregui, UML Re�nement and Abstraction Transformations, ROOM
2 Workshop, University of Bradford, 1998.

10. K Lano, Logical Speci�cation of Reactive and Real-Time Systems, Journal of Logic
and Computation, Vol. 8, No. 5, pp 679{711, 1998.

11. K. Lano, R. France, J-M. Bruel, A Semantic Comparison of Fusion and Syntropy,
to appear in Object-oriented Systems, 1998.

12. Rational Software et al, UML Documentation, Version 1.1,
http://www.rational.com/uml, 1997.

13. A. Simons, I. Graham, 37 Things That Don't Work in Object-Oriented Modelling

with UML, ECOOP 98 Workshop on Behavioural Semantics, Technical Report
TUM-I9813, Technische Universitat Muchen, 1998.

14. E. Yourdon, Modern Structured Analysis, Prentice-Hall, 1989.

This article was processed using the LATEX macro package with LLNCS style

