
Chapter 1

Modeling and verifying behavioral aspects

F. Bréant,
J.-M. Couvreur∗,
F. Gilliers,
F. Kordon,
I. Mounier,
E. Paviot-Adet,
D. Poitrenaud,
D. Regep,
G. Sutre

Abstract Design of reliable distributed systems is stretching limits in term of complexity
since existing development techniques are usually not fully accurate for this type
of applications. One of the main problem is the gap between the various nota-
tions used during development process. Even ifUML is an important step for-
ward in this domain, it is not fully suitable for formal description of distributed
systems.

In this chapter, we present theL f P (Language for Prototyping) notation. It is
dedicated to formally describe distributed (potentially embedded) systems. We
show howL f P may serve as an input for formal verification using Data Decision
Diagrams (DDD), an extension of Binary Decision Diagrams (BDD) enabling a
compact representation of state spaces. Some aspects of theBART case study
will be presented and we show what type of behavioral properties we may verify
on this specification.

1. Introduction

The fast evolution of distributed technology has lead to systems stretching
limits in terms of complexity and manageability [Lev97]. This generates a
major problem when distributed systems have to be certified.The problem

∗Chapter responsible.

1

2

resides at both the design and coding phases: collected requirements may be
incomplete, inconsistent or misunderstood and the numerous interpretations of
a large specification often leads to unexpected implementation.

The problem comes from the gap between the various notationsused in the
software life cycle (natural languages, specification languages, programming
languages). A first solution is to use a methodology providing a coherent set
of notations to solve this problem.UML [OMG99] can be considered as an im-
portant step forward in this domain because it proposes a standard to describe
a system specification.

However,UML semantics is not sufficiently formally defined to enable for-
mal verification unless strong restrictions and hypotheseson the way to use it
are introduced (like in [Bos99, GLM99]). Moreover, the behavioral seman-
tics of UML will not be formally defined for several years since version 2.0
essentially formalizes static/structural aspects and introduces OCL to define
constraints precisely. However, only a very limited numberof pages are dedi-
cated to dynamic aspects in [OMG01].

We consider that, for distributed systems,UML is mostly valuable at early
stages of the software life cycle. When a preliminary object-oriented solution
is elaborated, there is a need for another type of description closer to imple-
mentation (e.g. that does not rely on complex object oriented middleware like
CORBA, that cannot be used when time or memory constraints are consid-
ered). This new description should enable both formal verification (a well ac-
cepted approach to leverage the quality of distributed systems) and automatic
program generation (to ensure coherence between specification and program).
Program generation techniques are out of the scope of this chapter and will not
be discussed.

2. Technical approach and method

Model-based development [QvSP99] focuses on the use of a model that
serves as a basis for various purposes: validation, formal verification and au-
tomatic program generation. We share this opinion and consider that it corre-
sponds to an evolutionary prototyping methodology [KL02].

2.1 Methodology

We propose a ”model based” development approach [GKR02] centered on
a formal model enforcing strong relations between system modeling, formal
verification and implementation for distributed systems. We want to provide:

transparent access to formal verification techniques to enable their use in
an industrial context without requiring heavy training andspecific skills
as outlined in [LG97],

Modeling and verifying behavioral aspects 3

strong correspondences between the detailed description of a system, its
proofs and its implementation. In other words: ”what you describe is
what you check and implement”.

Figure 1.1 outlines our model based development approach and links it into
a ”classical” requirement/analysis phase producing anUML model. We con-
sider that a reformulation of this initial model to build thecentral model of our
approach is necessary to unify behavioral information thatare dispatched into
severalUML diagrams. Most of the work should be automated but the designer
has to add information required for formal verification (e.g. unambiguous de-
scription of the system’s behavior, assertions such as ”this server has to provide
an answer”) and for code generation (such as ”implementation of component
< C > is in Java”). Such additional information is sometimes located inUML
tagged values supported by some CASE tools (and thus potentially non stan-
dard). Let us note that the introduction of OCL [OMG01] in thelast UML
release allows to describe many of these properties (mostlythe one related to
the system consistency).

UML

formal verification
techniques

Execution of
distributed programs

LfP

transformation

code generation

result from execution analysis

result from formal analysis

reformulation

Figure 1.1. Outline of our model based development approach.

We have introducedL f P (Language for Prototyping), a high-level modeling
language to detail the specification of a distributed embedded system. The
centralL f P model serves as a basis for:

formal verification of the system.Transformations are driven by vari-
ous verification techniques<formal model, used technique> to produce
views on the systems on which properties can be automatically verified.
Based on results, the central model is updated until all properties are
satisfied.

Tool based implementation.Program generators produce the source files
to be compiled and integrated in the target execution environment. This
step is out of this chapter’s scope.

4

2.2 L fP

L f P is a formally defined graphical Architecture Description Language with
coordination facilities focusing on (potentially embedded) distributed systems.
It enhances an existingUML model with information enabling formal verifica-
tion as well as automatic program generation of distributedprograms. To do
so, we define three complementary views:

The functional viewdescribes the system behavior in terms of execu-
tion workflow of connected components and the coordination between
component instances. It also describes the system softwarearchitecture.

Theimplementation viewdescribes the system implementation constraints
(target execution environment, used programming language, etc.) and
the deployment topology.

Theproperty viewspecifies properties to be verified by the system. Such
properties are stated by means of invariants (for example, to check mu-
tual exclusion), temporal logic formulas (for example, to check avail-
ability or fairness of a service) or any other statement suitable for formal
verification. This view can be exploited to perform computer-assisted
formal verification but also introduces relevant information for code gen-
eration (e.g. runtime checks).

A small example. Let us present a simple client/server system to
illustrate someL f P features. Clients interact with a server offering a set of
services:Start Session()returning a session id,A Service(sid, s)performing
services on sessionsid andEnd Session(sid)closing sessionsid. Figures 1.2
and 1.3 present theUML class diagram and a sequence diagram for this system.

Client Server

CS_chan

* 1

Figure 1.2. Example: the class diagram.

Client Server

End_Session()

Start_session()

A_Service(sid)

Figure 1.3. Example: a sequence diagram.

The architecture diagram. The architecture diagram reproduces the
original UML Class Diagram structure enriched with information comprising

Modeling and verifying behavioral aspects 5

important elements such as the logical communication infrastructure between
classes or instanciation of classes. This infrastructure is the root of a hierarchy
of diagrams defining the behavioral contract for each component of the system.

ServerClient CS_Chan

1

Client.s is CS_Chan.cl

0

all

Server.c is CS_Chan.sv

20

FIFO

-- Global declarations

-- Constant to parameterize the Session_Id type

const Max_Session : integer := 100;

type Session_Id is range (1 .. Max_Session) of integer;

-- Static instances of classes

static_instanciation : S : serveur with ();

static_instanciation : C_1 : client with ();

static_instanciation : C_2 : client with ();

static_instanciation : C_3 : client with ();

static_instanciation : C_4 : client with ();

static_instanciation : C_5 : client with ();

Figure 1.4. L f P architecture diagram of the example.

Figure 1.4 presents the architecture diagram for the client/server example. It
introducesCS Chan, the media describing communication semantics (behav-
ior of communication elements). This media is connected to classes by means
of binders (inspired from binding points in RM-ODP [IT97]).CS Chan de-
clares two ports,cl andsv. Some characteristics of these ports (such as capac-
ity) are defined in the architectural diagram (the right binder is a FIFO buffer
that can hold up to 20 messages). Binders connect communication ports pro-
vided by classes and media: in the figure, the portcl from CS Chan is linked
to ports from Client.

The architecture diagram of Figure 1.4 also defines the initial instances for
the system: 1 server and 5 clients. Finally, global types andconstants may be
defined; they are visible on the entireL f P specification.

Binders define the interaction between a class instance and amedia instance
(e.g. buffering characteristics). They contain information regarding the ca-
pacity of associated buffer and a cardinality specifying ifthe corresponding
buffer is shared between instances of connected classes or not. Let us illustrate
how the cardinalities of this model should be interpreted. Figure 1.5 shows
relations between a class and a media and Figure 1.6 shows theunfolded inter-
connections after instanciation. We consider three instances of classesA and
B and two instances of mediaM1 andM2. Cardinality1 means that all con-
nected class instances has its own binder whileall means that connected class
instances share one binder.

Behavioral contract of a class. L f P behavioral diagrams (L f P-
BD) rely on a sequential state machine notation to unambiguously describe

6

all

B M2

M1A
1

Figure 1.5. Examples of class connections.

B(1)
M2-1

B(2)

M2-2
B(3)

A(2)
M1-2

A(3)

M1-1
A(1)

Figure 1.6. Connections of the instances.

all types of behavioral contracts inL f P. The behavioral contract describes the
activation conditions of triggers and methods and is definedusing aL f P-BD.
Figure 1.7 presents the protocol for theServerclass; the scenario of Figure 1.3
is contained in this diagram.

begin

end

Start_Session

End_Session

A_Service s1

-- Prototypes

function Start_Session () return Session_Id;

procedure End_session (si : in Session_Id);

synchrony procedure A_Service (si : in Session_Id);

-- Variable (shared if there are several instances

-- of the server)

shared Nest_Session: Session_Id := 1;

Figure 1.7. Behavioral contract of the Server class.

The declarative part ofServer defines three methods:Start Session, A Service
andEnd Session. The first two methods are synchronous since one is a func-
tion (a return value is expected by the invoker) and the second one is stated so.
The last method is asynchronous. Asynchronous methods mustbe procedures
with read-only parameters.

VariableNext Session is also declared to be shared by all server instances.
It also declares a binder reference:s to be linked to a binder in the architecture
diagram (s is linked withsv in Figure 1.4). In the state machine transitions are
represented by squares. These transitions correspond to a method to be invoked

Modeling and verifying behavioral aspects 7

by some other class that belongs to the system or to a trigger to be automat-
ically executed when a given condition is locally satisfied.These transitions
are a link to the behavioral contract of the corresponding method. Figure 1.7
shows that, once it is started with a given session identifierthe server instance
executes several times the methodA Service and ends whenEnd Session is
invoked.

Behavioral contract of a method. Methods have their own behav-
ioral contract, also represented usingL f P-BDs. These diagrams have a unique
initial state and at least one terminal state.

Figure 1.8 shows the contract ofStart Session. This method is protected
with a semaphore (mutex) because it manipulates the shared variableNext Ses-
sion. Transitioncreate next server references theServer constructor and cre-
ates a new instance of server when fired. This instance will start its execution
at the initial state of the class behavioral contract.

-- The function prototype

function Start_Session () return Session_Id;

-- We temporarily need a reference to a

-- new instance of server

ns : server;

b

Next_Session := Next_Session + 1;

&s return (Next_Session);

&s;

b_startsession

e

a

ns := server ();

create_new_server

V

mutex

e_startsession

P

mutex

d

c

end

begin

Figure 1.8. Behavioral contract of methodStart Session.

TheL f P-BD of Figure 1.8 also references thes binder defined to be an in-
terface to other components. SinceStart Session is a method, it is activated by
an incoming request, referenced as a precondition inb startsession. A return
value is sent back to the emitting client before releasing the locke startsession.
Let us note that the address of the invoking client is handledby theL f P runtime
and used to route the corresponding message. Here, the classs is connected
to a set of media by means of ports as specified in the Architecture diagram
(Figure 1.4).

Description of a media. Media have no method. The associatedL f P-
BD describes the communication semantics to be supported. Figure 1.9 shows
the very simple behavior of mediaCS Chan that only relays information from

8

client to server and vice-versa. This media typically represents a simplified
socket-like mechanism.

-- Variables to store messages

M_cl, M_sv : message;

-- to enable/disable reception

enable_cl, enable_sv : boolean := true;

enable_cl := true;

enable_sv := true;enable_sv := false;

enable_cl := false;

Get_cl [enable_cl]

&cl []:M_cl;

Get_sv [enable_sv]

&sv []:M_sv;

Put_sv

&sv []:M_cl;

Put_cl

&cl []:M_sv;

Figure 1.9. Behavioral contract of mediaCS Chan.

Let us note that an instance ofCS Chan transports only one message at
a time in a given direction (fromcl to sv and vice-versa) ; this is ensured
by the guard involving the boolean variables on transitionsGet cl andGet sv.
A message is stored in a variable according to its direction (M cl or M sv) ;
and then delivered when transitionscl and sv are fired. The typemessage
is predefined and represent any message computed from the possible method
invocation declared in a model. A binder cannot access to thecontent of a
lfp message. When it is necessary (e.g. to route the message), the media
have to declare adiscriminant to be explicitly set when sending a message
through a binder. Such a mechanism is presented later in thischapter.

2.3 Operational semantics of L fP

Operational semantics defines the rules necessary to move from one pro-
gram state to another. In this section,L f P semantics is clarified.L f P allows to
define high-level actions that must be decomposed since theyusually involve
actions from distant objects. For instance, several messages can be sent (or
received) within a singleL f P transition. Such a transition has to be splitted
because it cannot be considered as atomic. The number of resulting transi-
tions, each one corresponding to an atomic action, is equal to the number of
messages sent (or received).

In the following, a state of aL f P program is characterized, and the associ-
ated operational semantics is further described.

Modeling and verifying behavioral aspects 9

State of a L fP program. We are now in position to define precisely
the constitutive elements of aL f P program state. For classes and media, the
elements composing their state can be easily deduced from the specification.

Shared variables Local mediaBindersClass instance Local mediaBindersClass instance

Global information ... Class instances and local mediaClass instances and local media n1

Program counterInstance attributes Stack Program counter Local variables

Local variablesParametersProgram counter Local variablesParametersProgram counter...

...

Figure 1.10. L f P state description

A state (Figure 1.10) is made of global and local to classes variables. Binders
with capacityall are global information, since they are not linked to any par-
ticular class instance. For the same reason, media that are not automatically
instantiated are also considered as global information. Everything else is con-
sidered as local to classes information.

The part of the state describing classes contains:

variables shared by all instances and the related locks (i.e. class vari-
ables),

class instances information (variables, program counter,stack when meth-
ods are invoked),

binders with capacity1 linked to each instance class,

every media dynamically instantiated with each class instance.

Semantic of a L fP program. In this subsection, we describe how,
from a given state of aL f P program, a new state can be reached.

The atomic transitions considered here systematically modify a program
counter. They can also assign variables, read or write one message. However,
atomic transitions can be classified, depending on their impact on the state:
method invocation or ending, trigger invocation or ending,message sending or

10

reception... First of all, we describe a simple transition that only performs a
variable assignment, then we study how other kind of transitions modify this
basic schema.

The execution of this simple transition is bound to the satisfaction of a guard
(if not specified, the guard expression is set totrue). Executing a transition is
done in two steps: evaluating if the transition can be executed and execution of
the transition.

The transition can be executed if:

the program counter has the right value,

no lock constraint prevents the execution,

the guard is satisfied.

Executing the transition means:

locking variables if needed,

execution of the assignment instruction,

unlocking variables if needed,

updating the program counter value.

If the transition is a trigger invocation, there is no assignment instruction to
perform. Instead, a new level is added to the stack, where theprogram counter
and the parameters are initialised. The program counter of the previous level
is set to the trigger return value.

A trigger/method ending is a transition that puts the program counter to
the trigger/method end place. In this case, an extra action is performed: the
current stack level is destroyed. If the stack is empty before destruction, then
the instance is destroyed together with its local binders and media.

A transition that receives a message must verify before executing that a
message is ready to be received:

in the corresponding binder if the communication is asynchronous (binder
capacity is strictly positive),

a transition sending the message must be ready to fire in synchronous
cases (binder capacity is null)

After this verification, the transition performs an action:

assign values received in the message to variables, if the transition wait
for a method result,

Modeling and verifying behavioral aspects 11

adds a new level to the stack, just like a trigger invocation transition, if
the transition is a method invocation.

After this action:

the message is removed from the binder if the communication is asyn-
chronous,

the two transitions are simultaneously fired otherwise.

If the transition creates an instance, the action performedis the creation and
initialisation of the instance and the related local binders and media.

2.4 DDD

Verifying safety properties on aL f P program basically reduces to comput-
ing the program’sreachability set, that is the set of all states that can be reached
(along some path) from the program’s initial states. The reachability set can be
very large, socompact representationsfor sets of states are needed. Moreover,
efficient operations such as equality test, set-theoretic operations, and oper-
ations corresponding toL f P instructions are also required on these compact
representations in order to compute the reachability set. Data Decision Dia-
grams satisfy all these requirements, and they have been successfully applied
to the verification of the BARTL f P description.

Data Decision Diagrams(DDDs) aresuccinctdata structures for represent-
ing finite sets of assignment sequencesof the form(e1 := x1;e2 := x2; · · · ;en :=
xn) whereei are variables andxi are values. When an ordering on the variables
is fixed and the variables are boolean,DDDs coincides with the well-knowBi-
nary Decision Diagrams[Ake78, BRB90]. If an ordering on the variables is
the only assumption,DDDs are the specialized version of theMulti-valued De-
cision Diagramsrepresenting characteristic function of sets. For Data Decision
Diagram, we assume no variable ordering and, even more, the same variable
may occur many times in an assignment sequence, allowing therepresenta-
tion of dynamic structures: for a stack variablea, the sequence of assignments
(a := x1;a := x2; · · · ;a := xn) may represent the stack contentx1x2 · · ·xn.

Traditionally, decision diagrams are often encoded as decision trees. Inter-
nal nodes are labeled with variables, arcs with values (of the adequate type)
and leaves with either0 or 1. Figure 1.11, left-hand side, shows the decision
tree for the setS= {(a := 1;a := 1),(a := 1;a := 2;b := 0),(a := 2;b := 3)}
of assignment sequences. As usual,1-leaves stand for accepting terminators
and0-leaves for non-accepting terminators. Since there is no assumption on
the cardinality of the variable domains, we consider0 as the default value.
Therefore0-leaves are not depicted in the figure.

12

a

1

a

1 1

b

b

1 2

21 3

0

a

1

a

1

T

1 2

21

0

b

Figure 1.11. Two Data Decision Diagrams.

Unfortunately, any finite set of assignment sequences cannot be represented.
Thus, we introduce a new kind of leaf label:> for undefined. Intuitively, >
represents any finite set of assignment sequences. Figure 1.11, right-hand side,
gives an approximation of the setS∪{(a := 2;a := 3)}. Indeed, an ambiguity
is introduced since after the assignmenta := 2, two assignments have to be
represented:a := 3 andb := 3. These two assignments affect two distinct
variables so they can not be represented, as two distinct arcs outgoing from
the same node cannot be labeled with the same value (in other words, non-
determinism is not authorized in the decision tree).

We now give an overview of Data Decision Diagrams. For a more formal
and detailed presentation of DDDs, we refer the reader to [CEPA+02].

Syntax and semantics of DDDs. In the following,E denotes a set
of variables, and for anye in E, Dom(e) represents thedomainof e.

Definition 1 (Data Decision Diagram) The setID of DDDs is inductively de-
fined by d∈ ID if:

d ∈ {0,1,>} or

d = (e,α) with:

– e∈ E

– α : Dom(e) → ID, such that{x∈ Dom(e) |α(x) 6= 0} is finite.

We denote e
z

−→ d, theDDD (e,α) with α(z) = d andα(x) = 0 for all x 6= z.

Intuitively, a DDD can be seen as a tree.DDDs 0, 1 and> are leaves, and
a DDD of the form(e,α) is a tree whose root is labeled with variablee, and
with an outgoing arc labeled withx to a subtreeα(x) foreach valuex∈Dom(e).
From a practical point of view, as non-accepting branches (i.e. branches ending

Modeling and verifying behavioral aspects 13

with a0-leaf) are not encoded, the “finite support” condition forα ensures that
DDDs can be implemented (even when variables range over infinitedomains).

Recall thatDDDs represent finite sets of assignment sequences. An im-
portant feature ofDDDs is the capability toapproximatesets of assignment
sequences that are not exactly representable, using theundefinedDDD >. Ac-
tually, > representsany set of assignment sequences, so in other words,>
itself is the worst approximation of a finite set of assignment sequences.

More precisely, themeaning[[d]] of a DDD d is a set of finite sets of assign-
ment sequences. In particular,[[>]] is the (infinite) set of all finite sets of ass-
signment sequences. When> does not appear in aDDD, theDDD represents
a unique finite set of assignment sequences (i.e. its meaningis a singleton).
Hence, such aDDD yields an exact (non approximate) representation and it is
calledwell-defined.

The unique set in the meaning of a well-definedDDD d is the set of assign-
ment sequences corresponding to accepting branches (i.e. branches ending
with a1-leaf) in the tree representation ofd. In particular, we have[[0]] = { /0}
and[[1]] = {{()}} (where() is the empty sequence of assignments).

When aDDD is not well-defined, its meaning consists in several finite sets
of assignment sequences, and one of them is the finite set of assignment se-
quences being represented. Hence, such aDDD yields an approximate repre-
sentation. The meaning of an ordinaryDDD d intuitively corresponds to the set
of meanings of all well-definedDDDs that can be obtained fromd by replacing
each occurrence of> with some well-definedDDD.

Clearly, if twoDDDsd andd′ satisfy[[d]] ⊆ [[d′]] thend is more precise than
d′ since there is less ambiguity ind than in d′, and we say thatd is better
definedthand′. Two DDDs are said to beequivalentwhen they have the same
meaning.

Equivalence checking forDDDs is crucial whenDDDs are used to represent
sets of states. Fortunately,DDDs admitcanonical formsso that equivalence
checking forDDDs in canonical form reduces to (syntactic) equality. Intu-
itively, from the tree representation point of view, the canonical form of aDDD
is obtained by replacing with0 all sub-trees that have only0-leaves. TwoDDDs
in canonical form are equivalent if and only if they are equal. Moreover, every
DDD is equivalent to aDDD in canonical form.

In the following,we only considerDDDs that are in canonical form.

Operations on DDDs. First, we generalize the usual set-theoretic oper-
ations –sum(union),product(intersection) anddifference– to finite sets of as-
signment sequences expressed in terms ofDDDs. The crucial point of this gen-
eralization is that allDDDs are not well-defined and furthermore that the result
of an operation on two well-definedDDDs is not necessarily well-defined. The

14

sum+, theproduct∗ and thedifference\ of two DDDs are inductively defined
in the following tables. In these tables, for any� ∈ {+,∗,\}, α1�α2 stands for
the mapping in Dom(e1) → ID defined by(α1 �α2)(x) = α1(x)�α2(x) for all
x∈ Dom(e1).

+ 0 1 > (e2,α2)

0 0 1 > (e2,α2)

1 1 1 > >

> > > > >

(e1,α1) (e1,α1) > >
(e1,α1 +α2) if e1 = e2

> if e1 6= e2

∗ 0 1 > (e2,α2)

0 ∨ (e1,α1) ≡ 0 0 0 0 0
1 0 1 > 0
> 0 > > >

(e1,α1) 0 0 >
(e1,α1 ∗α2) if e1 = e2

0 if e1 6= e2

\ 0 1 > (e2,α2)

0 0 0 0 0
1 1 0 > 1
> > > > >

(e1,α1) (e1,α1) (e1,α1) >
(e1,α1\α2) if e1 = e2

(e1,α1) if e1 6= e2

These set-theoretic operations onDDDs actually produce the best possible
approximation of the result. More precisely, ifd andd′ are twoDDDs, then the
sumd+d′ (resp. the productd∗d′, the differenced\d′) is the “best defined”
DDD whose meaning contains the set{S∪S′ |S∈ [[d]] andS′ ∈ [[d′]]} (resp. the
set{S∩S′ |S∈ [[d]], S′ ∈ [[d′]]}, the set{S\S′ |S∈ [[d]] andS′ ∈ [[d′]]}).

The concatenation operator defined below corresponds to theconcatenation
of language theory.

d ·d′ =

0 if d = 0∨d′ = 0
d′ if d = 1
> if d = >∧d′ 6= 0
(e,α ·d′) if d = (e,α)

Notice that anyDDD may be defined using constants0, 1, >, the elementary
concatenatione x

−→d and operator+, as shown in the following example.

Example 1 Let dA be theDDD represented in left-hand side of Fig. 1.11, and
dB the right-hand side one.

dA = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→b 3

−→1

dB = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→>

Modeling and verifying behavioral aspects 15

Let us now detail some computations:

dA +a 2
−→a 3

−→1 = a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→

(

b 3
−→1+a 3

−→1
)

= a 1
−→

(

a 1
−→1+a 2

−→b 0
−→1

)

+a 2
−→>

= dB
(

a 1
−→1∗a 2

−→1
)

∗> = 0∗> = 0 6= a 1
−→1∗

(

a 2
−→1∗>

)

= a 1
−→1∗> = >

dA \dB = a 2
−→

(

b 3
−→1\>

)

= a 2
−→>

dB ·c
4

−→1 = a 1
−→

(

a 1
−→c 4

−→1+a 2
−→b 0

−→c 4
−→1

)

+a 2
−→>

Homomorphisms on DDDs. In order to iteratively compute the reach-
ability set of anL f P program, we need to translateL f P instructions intoDDD
operations. These complex operations onDDDs are described by homomor-
phisms. Basically, an homomorphism is any mappingΦ : ID → ID such that
Φ(0) = 0 and such thatΦ(d1)+ Φ(d2) is better defined thanΦ(d1 + d2) for
everyd1,d2 ∈ ID. The sum and the composition of two homomorphisms are
homomorphisms.

So far, we have at one’s disposal the homomorphismd∗ Id which allows to
select the sequences belonging to the givenDDD d; on the other hand we may
also remove these given sequences, thanks to the homomorphism Id\d. The
two other interesting homomorphisms Id· d andd · Id permit to concatenate
sequences on the left or on the right side. For instance, a widely used left
concatenation consists in adding a variable assignmente1 = x1 that is denoted
e1

x1−→Id. Of course, we may combine these homomorphisms using the sum
and the composition.

However, the expressive power of this homomorphism family is limited;
for instance we cannot express a mapping which modifies the assignment of a
given variable. A first step to allow user-defined homomorphism Φ is to give
the value ofΦ(1) and ofΦ(e x

−→d) for anye x
−→d. The key idea is to define

Φ(e,α) as∑x∈Dom(e) Φ(e x
−→α(x)) andΦ(>) =>. A sufficient condition forΦ

being an homomorphism is that the mappingsΦ(e,x) defined asΦ(e,x)(d) =

Φ(e x
−→d) are themselves homomorphisms. For instance,inc(e,x) = ex+1

−→Id
and inc(1) = 1 defines the homomorphism which increments the value of the
first variable. A second step introduces induction in the description of the ho-
momorphism. For instance, one may generalize the incrementoperation to the
homomorphisminc(e1), which increments the value of the given variablee1.
A possible approach is to setinc(e1)(e,x) = ex+1

−→Id whenevere= e1 and oth-
erwiseinc(e1)(e,x) = e x

−→inc(e1). Indeed, if the first variable ise1, then the
homomorphism increments the values of the variable, otherwise the homomor-
phism is inductively applied to the next variables.

The formal definition of inductive homomorphisms can be found in [CEPA+02].
The two following examples illustrate the usefulness of these homomorphisms

16

to design new operators onDDD. The first example formalizes the increment
operation. The second example is a swap operation between two variables. It
gives a good idea of the techniques used to design homomorphisms for some
variants of Petri net analysis.

Example 2 This is the formal description of increment operation:

inc(e1)(e,x) =

{

e
x+1
−→ Id if e = e1

e
x

−→ inc(e1) otherwise
inc(e1)(1) = 1

Let us now detail the application of inc over a simpleDDD:

inc(b)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→inc(b)(b 2

−→c 3
−→d 4

−→1)

= a 1
−→b 3

−→Id(c 3
−→d 4

−→1)

= a 1
−→b 3

−→c 3
−→d 4

−→1

Example 3 The homomorphism swap(e1,e2) swaps the values of variables e1

and e2. It is designed using three other kinds of homomorphisms: rename(e1),
down(e1,x1), up(e1,x1). The homomorphism rename(e1) renames the first
variable into e1; down(e1,x1) sets the variable e1 to x1 and copies the old
assignment of e1 in the first position; up(e1,x1) puts in the second position the
assignment e1 = x1.

swap(e1,e2)(e,x) =

rename(e1)◦down(e2,x) if e = e1
rename(e2)◦down(e1,x) if e = e2

e
x

−→ swap(e1,e2) otherwise
swap(e1,e2)(1) = >

rename(e1)(e,x) = e1
x

−→ Id
rename(e1)(1) = >

down(e1,x1)(e,x) =

{

e
x

−→ e
x1−→ Id if e = e1

up(e,x)◦down(e1,x1) otherwise
down(e1,x1)(1) = >

up(e1,x1)(e,x) = e
x

−→ e1
x1−→ Id

up(e1,x1)(1) = >

Let us now detail the application of swap over a simpleDDD which enlights
the role of the inductive homomorphisms:

swap(b,d)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→swap(b,d)(b 2

−→c 3
−→d 4

−→1)

= a 1
−→rename(b)◦down(d,2)(c 3

−→d 4
−→1)

= a 1
−→rename(b)◦up(c,3)◦down(d,2)(d 4

−→1)

= a 1
−→rename(b)◦up(c,3)(d 4

−→d 2
−→1)

= a 1
−→rename(b)(d 4

−→c 3
−→d 2

−→1)

= a 1
−→b 4

−→c 3
−→d 2

−→1

Modeling and verifying behavioral aspects 17

One may remark that swap(b,e)(a 1
−→b 2

−→c 3
−→d 4

−→1) = a 1
−→>.

Implementing Data Decision Diagrams. In order to write ob-
ject oriented programs handlingDDDs, a programmer needs a class hierarchy
translating the mathematical concepts ofDDDs, of set operators, of concate-
nation, of homomorphisms and of inductive homomorphisms. These concepts
are translated in our interface by the definitions of three classes (DDD, Hom and
InductiveHom) where all the means to construct and to handleDDDs and ho-
momorphisms are given. Indeed an important goal of our work is to design
an easy to use library interface; so, we have used C++ overloaded operators in
order to have the most intuitive interface as possible.

From the theoretic point of view, an inductive homomorphismΦ is an ho-
momorphism defined by aDDD Φ(1) and an homomorphism familyΦ(e,x).
Inductive homomorphisms have in common their evaluation method and this
leads to the definition of a class that we namedInductiveHom that contains
the inductive homomorphism evaluation method and gives, interm of abstract
methods, the components of an inductive homomorphism:Φ(1) andΦ(e,x).
In order to build an inductive homomorphism, it suffices to define a derived
class of the classInductiveHom implementing the abstract methodsΦ(1) and
Φ(e,x).

The implementation of our interface is based on the three following units:

A DDD management unit: thanks to hash table techniques, it implements
the sharing of the memory and guarantees the uniqueness of the tree
structure of theDDDs.

An HOM management unit: it manages data as well as evaluationmeth-
ods associated to homomorphisms. Again the syntactic uniqueness of
a homomorphism is guaranteed by a hash table. We use the notion of
derived class to represent the wide range of homomorphism types.

A computing unit: it provides the evaluation of operations on theDDDs,
as well as the computation of the image of aDDD by an homomorphism.
In order to accelerate these computations, this unit uses anoperation
cache that avoids to evaluate twice a same expression duringa computa-
tion. The use of cached results reduces the complexity of setoperations
to polynomial time. Since inductive homomorphisms are user-defined,
we cannot express their complexity.

3. Inputs taken from the BART case study

In this section we describe the hypotheses of the BART systemwe consider
and add some when necessary.

18

3.1 The railroad system model.

We focus our study on the behavior of trains on a single railway line. This
line is not circular and is identified by a starting and an ending point. Trains
always enter at the starting point and leave at the ending point. We do not
consider the possibility to enter and leave the line at any other point. Therefore
we consider unidirectional lines that do not share any part with other lines.
It is possible to take into account bidirectional lines withtwo unidirectional
lines and to concatenate these bidirectional lines to consider shared sections.
In this case we must consider a new policy to enter and leave the line.A line
connects several stations where the trains must stop. Thesehypotheses precise
the global description of the Bart system given in Par.??.

Physical characteristics of the line and trains are known and expressed us-
ing a simulation model used to stimulate the modelled system. The simulation
model allow to compute possible accelerations and decelerations of trains re-
garding their current position, speed and characteristics.

3.2 The UML model

According to the hypothesis presented in the previous section, we propose
an architecture that is first sketched using anUML Class Diagram presented in
Figure 1.12. It contains 7 classes:

Extern data stores the simulation model of the real world. This infor-
mation is made available to other classes by means of an application
programming interface that generates the data used to take decisions.

Operator represents the operator who starts the system, may set it into
alert mode (all train have to stop then) and sets back the system to normal
mode (trains may circulate).

Line Manager handles one line. It lets trains enter and acknowledge
when they leave the track.

Train represents the controller on each train. This controller communi-
cates with the watchers that handle motions control and collision check-
ing.

Move controller and Anti collision system are the watchers.Move con-
troller insures that the train is going forward and stops at stations; Anti col-
lision system checks that the current situation cannot lead to a collision
with the front train. Each train has its own instances of watchers.

Comm represents the communication system. It has its own addressing
mechanism : a unique address is explicitely affected to any component of

Modeling and verifying behavioral aspects 19

the system (except forExtern data). All classes communication (except
for Extern data) are handled byComm.

operator

Train Move_controllerAnti_collision_system

Line_manager

Extern_data

Comm

1

*

*

1

*
1

*

1

1

*

1

*

1

*

*

1

*

1

*

1 1

1

1

1

1

1

Figure 1.12. UML Class Diagram of the BART speed management system.

3.3 Specification of components and their
interactions.

Components. TheLine Manager adds trains at the begining of the line
and suppresses them when they reach the end. It also alerts the trains when
a manual alarm is raised (all train have to stop) and informs them when this
alarm ends (the system may restart). TheLine Manager is the only component
to communicate with all others.

To each train is associated aMove controller and anAnti collision system.
TheMove controller manages the motion of a train with respect to its position,
speed and its distance to the next station. TheAnti collision system ensures that
a secured distance remains between the train and its predecessor on the track
; it instructs theMove controller when an emergency is detected, forcing the
train to stop).

In each train, an embedded calculator updates the speed and the position
with respect to the decision of theMove controller. We identify each calculator
with its associated train. The location of theMove controllers and anti-collision
systems is not given. They are grouped in several centers. The communication
services require knowledge of communication ports attached to theMove con-
trollers and anti-collision systems independently of their location, therefore it
is not necessary to define precisely what a center is.

Activation of components. We consider an interleaving execution
semantics. Only one action is performed by one component at agiven step.

20

All possible actions interleaving are considered, all possible executions are
thus studied.

A train and its associated components (the corresponding instance ofAnti col-
lision system andMove controller) are executed in an infinite loop. A step of
the loop is performed during one time unit. The actions performed are ordered
according to the following sketch:

The Move controller notifies the calculator of the speed modification to
apply to the train.

The calculator computes its new speed and position and transmits them
to theMove controller and to the anti-collision system.

The anti-collision system checks if a collision may happen (i.e. if the
train and its predecessor are too close, an urgent stop is necessary).

When a problem is detected, components perform the following actions:

TheAnti collision system informs theMove controller of the problem.

TheMove controller orders theTrain to stop immediately.

TheTrain stops as fast as possible.

Component’s communications. To be independent of location con-
straints, we consider communication services that associate addresses to the
processes and not to their physical location. If we considerthe communication
between the processes that manage the supervising of a trainand the train itself,
we have to give an address to the train (calculator), theMove controller and the
anti-collision system. Whatever their physical location is, the communication
services ensure that their address are not modified. Therefore, Move controller
and anti-collision system can migrate from a center to another.

We assume that communications are both safe (no message is lost) and fast
regarding actions to be performed.

3.4 Properties of the system

The system has to verify the following critical properties:

Each train stops at each station.

Trains start with specified condition.

No collision is possible.

Speed limits on each sections of the railroad are respected.

Resources are sufficient for the correct execution of the system.

Modeling and verifying behavioral aspects 21

We consider that these properties have to be verified for a safe system. We
also consider some additional properties:

No deadlock situation can occur.

Synchronous and Asynchronous communications are correctly performed.

Emergency situation are correctly handled.

Insertion and removal of trains from the line are correctly sequenced.

Once the computation of reachable states is performed, one can verify prop-
erties by implementing the homomorphism that will verify a corresponding
assertion. We will address again the verification of properties in the experi-
ment section 5.6.

4. Applying the approach to the case study

4.1 The L fP diagrams

We present in this section theL f P diagrams describing the BART system.
The full model is too complex to be presented here but we selected several rel-
evant diagrams, which demonstrate characteristics ofL f P from the modeling
and analysis point of views.

The architecture diagram. Figure 1.13 shows theL f P architecture
diagram that is deduced from theUML Class Diagram of Figure 1.12. Going
from one to another show how some UML problems may be solved. In Fig-
ure 1.12, the communication system was modeled using a class. We propose
to make it aL f P media. A similar problem is raised by relations connected
to Extern data. No communication mechanisms is explicitely stated andL f P
requires a media here (Inline access).

Let us now explain the declarative section:

A set of constants are declared and may be used everywhere in the
model. This is a way to easily change some parameters.

Several types are declared and may be used everywhere in the model.

L f P allows both static and dynamic instanciation of classes andmedia.
Operator andExtern data are the only class to be statically instanciated
in the system. In both case, no context is provided and default values of
local variables are used.Inline access is also statically instanciated but
Comm instances are created dynamically according to the classesrelated
via the binderm out. Thus, an explicit association is expressed : each
instance ofComm is associated to a given instance of either classesTrain,

22

all

all.r is comm.reg

all

Line_manager.u is comm.ureg

1

all.m_in is comm.m_out

all

all.m_out is comm.m_in

all

Inline_access.client is all.io

Line_Manager

Operator

Move_controllerAnti_collision_systemTrain

Comm

Inline_accessExtern_data

all

Extern_data.io is Inline_access.server

-- Constants

define max_speed = 100;

define max_position = 100000;

define max_distance = 10000;

define max_train = 40;

define max_adr = max_train * 3;

define no_adr = 0;

define adr_lnmgr = 0;

-- Types

type t_speed is range 0 .. max_speed;

type t_position is range 0 .. max_position;

type t_distance is range -1 .. max_distance;

type t_trainid is circular

 range 0 .. max_train;

type t_adr is circular range 0 .. max_reg;

--Declaration of static classes instances

Operator : 1 with ();

Extern_data : 1 with ();

-- Declaration media instances

Inline_access : 1 with ();

Comm : using_binder out;

--Characteristics of binders

Inline_access: (server => 0, blocking, fifo,

 client => 0, blocking, fifo);

Comm: (r => 0, blocking, fifo

 u => 0, blocking, fifo

 in => 5, blocking, bag

 out => 5, blocking, bag);

Figure 1.13. L f P Architecture diagram of the BART speed control system.

Anti collision system, Move controller or Line Manager and models the
channel related to it.

Binder characteristics are also expressed : their size and behavior. A
binder stores and reads messages with no particular order.

Class Train. Its behavioral contract is presented in figure 1.14. When an
instance ofTrain is created, it starts in statebeginand automatically gets into
the line at its starting point (activation of triggerin line). At stateready, the
train speed is 0 and its position is set to the position of the departure station.
Since a train must always be able to process aget posrequest, this method can
be fired from all running states (ready, movingandstopped). Let us note that
values in input arcs always give the highest priority to thismethod.

To leave stateready, a Train instance has to execute thestart method that
sets the current speed to the minimal possible value. Then the instance reaches
the statemoving. All methods butget poshave the same priority (inputs arc
get value 2). Methodaccelerateis fired when the train is allowed to increase
its speed (the speed limit is not reached and there is sufficient space before
the previous train or the station to let the train stop). Method stable is acti-
vated when the limit speed is reached but nothing requires the train to stop.

Modeling and verifying behavioral aspects 23

-- Prototypes

procedure start (s:inout t_speed; p:inout t_position);

procedure stable (s:inout t_speed; p:inout t_position);

procedure decelerate (s:inout t_speed; p:inout t_position);

procedure fast_decelerate (s:inout t_speed; p:inout t_position);

procedure stop (s:inout t_speed; p:inout t_position);

procedure get_pos (p:inout t_position);

trigger in_line();

trigger check ();

trigger exit_line();

-- Instance variables

s : t_speed := 0;

p : t_position := 0;

t : t_trainid := 0;

mr, ar, oar : t_adr;

check

ready

moving

stable decelerate

accelerate

stopstart

endbegin

in_line exit_line

stopped

fast_decelerate

get_pos

get_posget_pos

2

2

2 2

2

2

1

1 1

2

Figure 1.14. L f P Behavioral contract ofTrain.

The main difference betweendecelerateandfast decelerateis the deceleration
factor applied to the train :deceleratecorresponds to a ”normal” brake when
fast deceleratedoes not care about passenger comfort and equipment stress (as
mentioned in Par.??).

To leave statemoving, it has to execute thestopmethod that can only be
activated if current speed is set to the minimum possible value. When the train
is stopped, it can either exit the line (triggerexit line) if its position corresponds
to the last station in the line or execute triggercheck(i.e. be sure that no
passenger is blocking a door) to come back into a state where it can move to
the next station.

endbegin b_in_line

&m_out:[mr]move_controller.ack();

Figure 1.15. L f P-BD for trigger in line.

24

Figure 1.15 shows the behavior of triggerin line that is very similar to the
two other ones (checkandexit line). The unique transition notifies the current
action to the associated instance ofMove controller.

The two methods we now present are representative of classTrain. Method
start (figure 1.16) is very similar in its structure to all the othermethods but
get pos, that is presented in figure 1.17.

When methodstart is fired, it invokes some primitives from theExtern data
to get the appropriate informations regarding the simulated environment (vari-
ableds gets the speed increment and variabledp gets the position increment).
Based on the results, it updates the local contexte of the instance (transition
update) and sends this updated information to the instance ofMove controller
handling the instance.

procedure start (s:inout t_speed; p:inout t_position) is

-- variables local to the method

ds : t_speed;

dp : t_position;

end;

ab_start

[s = 0]

&m_in;

end

begin

e_start

&m_out[mr]:method.back(s,p);

&m_out[ar]:Anti_collision_system.notify(s,p);

&m_out[oar]:Anti_collision_system.notify_p(s,p);

compute

ds := &io:extern_data.inc_speed (s,p,t);

dp := &io:extern_data.dist_variation (s, s+ds,p,t);>

b

update

s := s + ds;

p := p + dp;

Figure 1.16. L f P-BD for methodstart.

Figure 1.17 shows the structure of a typical accessor call : methodget pos
retrieves from its context the value of attributes that stores the current speed
of the train. The first transition gets the call and the secondone returns a value
to the initiator.

e_get_pos

&m_out[adr_lnmngr]:return (p);a

endbegin b_get_pos

&m_in;

procedure get_pos (p:inout t_position) is

end;

Figure 1.17. L f P-BD for methodget pos.

Media Generic addressed comm. We also present the generic com-
munication media used to support all interactions between the classes of the
system (figure 1.18). As shown in the architecture diagram, it has four ports:

Modeling and verifying behavioral aspects 25

reg associates an address to the media instance,ureg releases the address and
activates the destruction of the media instance,m in emits a message in the
media andm out retrieves a message from the media. Messages are stored in
variablestored m.

endTerminate

purge

D[target=me]

&in[target]:msg;

s6

s5

s4

I
&in [target]:msg;

[target=me]

O
[Stored_m /= {}]

&out #stored_m;

ext_adr:=ext_adr-me;

P

V

U

s1

R ®[new_adr];

me := new_adr;

ext_adr := ext_adr + new_adr;

s3

s2

ready
V

lock

P lock

begin

stored_m := stored_m + msg;

2

1

2

3

1

media_instanciation on out; -- Media types

type set_msg is set of message_structure;

Type set_adr is set of t_adr_m;

-- Media variables

me : t_adr_m := in_adr;

stored_m : set_msg;

shared ext_adr : set_adr;

Figure 1.18. behavioral contract for mediaComm.

When an instance ofComm is created, it waits for an address that will
be used to select the messages to be stored (and retrieved by the appropri-
ate client). Then it moves to stateready where messages can be inserted if
transitionI fires (the guard ensure that the message discriminant is equal to the
address associated with the media instance). TransitionO extracts a message
from variablestored m (the guard blocks if this variable contains nothing).
When U is fired, the media moves in statepurge ; all messages remaining
in the input binder are removed (transitionD) before the instance terminates
(transitionterminate).

5. State space computation using DDD

This section details the implementation by means ofDDDs of the BART
model expressed inL f P.

26

5.1 State coding by means of DDD structure

The computation of the reachable states requires a canonical representation
of a state to enable efficient comparison.

It also implies the ability to add the states without generating ambiguities.
Some simple principles can guaranty that no ambiguity will appear despite the
dynamic characteristics of the state.

Ordering. To obtain a canonical representation, it is critical that the state
and all its inner components are built with a defined deterministic order on the
set of assignments (variable:= value) composing theDDD.

For example, in order to represent sets of data, we define one single variable
with different values for each element of the set. The first value always gives
the size of the set. Additionally, we order the values. The comparison of the
two sets will then be a simple comparison between the 2 correspondingDDDs
and doesn’t require a costly algorithm.

The state of the BART is composed of nested blocks. Each blocks content
and position within theDDD is deterministically defined. This order defines
the syntax of the state at all level of the nesting.

This deterministic order has also the advantage of favorizing memory reuse.
Sharing of identical portions of theDDD structure is supported by the library.

Problem caused by dynamicity. Once we have defined a deter-
ministic order on the sequences of assignments, and since wewant to compute
the set of reachable states, we need to be able to add all the states with no risk
of producing ambiguities. The typical case to avoid is illustrated by the fig-
ure 1.19 below: Note that this case will also happen if the chosen order is not
deterministic.

Such ambiguities are trivially solved when the state is statically defined and
variables are ordered deterministically. However, when the size of data stored
in a state can change dynamically in any location of theDDD, ambiguities
are very likely to happen and the+ operation will lose compatibility with the
definition of the state.

To avoid this problem, we applied the following guidelines in the represen-
tation of dynamic structures by means ofDDDs:

each block of varying size must be prefixed with a same variable that
will contain a different value that should depend on the sizeor/and type
of the structure,

an instance of a basic structure such as a binder, a set, an array, a vector
or a multiset is identified by one variable. This same variable is used to
identify the elements of the structure,

Modeling and verifying behavioral aspects 27

+ = V1

a

T

a

c

c

e

V2V3

V1 V1

a a

Figure 1.19. Ambiguity when adding 2DDDs.

states composed of scalar(s) and/or basic structure(s) usedifferent vari-
ables and must be built according a common unique order.

The prefixing of dynamic blocks acts as a sentinel that will guaranty that no
ambiguities can occure at the rank of the considered block. The differentiation
will be done at the first variable if the blocks have differentsizes or inside the
block if only the values differ.

For instance, the multiset structure always starts with thesize of the multiset.
Figures 1.20 and 1.21 illustrate two cases of addition ofDDDs representing
multisets.

+

(a)

=

1

1

size=2

V1

V2

vset

vset

size=3

V1

V2

vset

vset

V3

vset vset

1

V3

vset

vset

size=2size=3

vset

V2 vset

V1

V2
vset

V1vset

vset

Figure 1.20. Adding 2 multisets when their
sizes differ.

(b)

=+

vset

vset

1

V2

V3V3

vsetvset

V4(!=V2)

vset

V1

size=3

V2

vset

V4(!=V2)

vset

V3V3

1 1

V1

vset

size=3

vset

vset

vset

size=3

vset

V1

vset

Figure 1.21. Adding 2 multisets of same
size when data differ.

28

5.2 Structure of the Bart State

This section presents the coding of the BART state by means ofa DDD. We
use the state description of an lfp program as described in 2.3. A state has the
following dynamic characteristics:

number of instances varies, (Train, Anticollision System,Move Con-
troller and their associated Medium),
instance supports stacks, i.e. push/pop operations that are passing pa-
rameters, insert/remove local variables and the return value of the pro-
gram counterPC,
global binder stores message multisets at the beginning of the state in
the global area,
local binders store received messages and are attached to each instance,
multisets instance variables store addresses,
messages are vectors of data which length depend on the message type.

At the top of the hierarchy, the different components of a BART state appear
in the following order:

global variables,
global binder (binder all),
instances,
end of state (special marker).

All the instances have the same structure shown below:

begin instance (special marker),
local media,
local binder,
instance variables,
program counter (PC),
stack (empty if not within a call),
end of instance marker.

The structure of the local media is simple:

media id (variableme),
message storage (multiset of vectors),
program counter (PC),

A block pushed on the stack has the following shape:

parameters,
local variables,

Modeling and verifying behavioral aspects 29

return value ofPC.

The order of the variables and structures has been chosen to save on costly
explorations of the states. The analysis of data dependencies helps in deter-
mining the best directions for exploration and thus, the order of the variables
as they appear in the state.

The instances are grouped by class and arranged into the following order:

instance of Line Manager,
instances of class Train,
instances of class Move Controller,
instances of class Anticollision System,
instance of Operator.

To each item described above corresponds a part of the state.Building theDDD
of the state consists in concatenating all the parts together.

The syntax of the state has been defined to allow easy changes on the order
of the classes without changing the homomorphisms implementing the model.
It seems difficult to determine in advance which order will give better perfor-
mances when computing the reachable states. Some experimentation can help
determine the best order.

Note also that there is no order defined within a group of instances of one
class. The order is difficult to realize because it would depend on values that are
not yet known at insertion time. This is not causing a problemin the addition of
the states because all instances of one class have the same structure. However,
it may cause some problem with the canonicity of the representation. Solving
this issue requires implementing reordering homomorphisms, assuming that a
total order can be found on an heterogeneous structure, which was the case in
the BART.

State implementation. Variables of aDDD are identified by an integer
value. The value of a variable is also of type integer. To helpdebugging and
writing efficient homomorphisms, types have been defined. Those types are
embedded in the encoding of the variable identifier:

variable (local and global),
program counter (PC),
block of variables,
arrays,
multiset,
binders (local and globals),
media,
instances,

30

markers.

The type of variables can be directly tested in the code of thehomomorphisms
using masking operation on the variable identifier.

The messages are defined by a sequence of assignments as shownon figure
1.22. The values indicate the length, the destination, the operation code and
the parameters of a message. There is no message type defined because the
messages are built using the variable of the hosting instance (binder or multi-
set).

Dest Opcode ParamsLength

Figure 1.22. Message structure.

A number of C++ classes allows to generateDDD for the various types of
structures. Classes corresponding to each type of instancehave been derived
from the classes listed above. These classes contain explicit list of instance
variables as they appear in theDDD. So, when writing an homomorphism, it
becomes straightforward to refer to a particular variable.A main class contains
all the components and allows to generate the whole BART state.

5.3 Homomorphisms

The verification of aL f P model by means ofDDDs, requires the definition
of the homomorphisms that represent theL f P operational semantics. We need
homomorphisms to identify all enabled transitions in orderto compute the set
of new states obtained after the execution of each one of them.

Basic homomorphisms. A set of basic homomorphisms has been
developped to manipulate the state. These low level homomorphisms are used
to implement the transmission of messages, the evaluation of preconditions
and the firing of transitions.

To enable communication among the instances, the followinghomomor-
phisms have been implemented:

binder all to media transfer of messages,
media to local binder transfer of messages,
instances to global binder transfer of messages,
local binder to instance transfer of messages.

To implement the firing of transitions the following homomorphisms have been
implemented:

stack operation,

Modeling and verifying behavioral aspects 31

assignments of scalars and arrays,
basic operations on multisets,
assignments using message parameters,
precondition evaluation (expression evaluation).

Most of the transitionst are implemented by means of two homomorphisms:
Testtransition(t)will return theDDD containing the states that satisfy the pre-
condition.Fire transition(t)will return theDDD obtained after firing the tran-
sition t.

The computation of the set of reachable states is performed by means of a
loop that evaluates each transition precondition. We stop to study the execution
from a set of states if the associatedDDD is equal to a one already built. The
order in which transitions are studied allows to consider priorities between
transitions they are expressed inL f P.

Precondition evaluation and firing. The state may contain several
instances of a same class. The precondition evaluation homomorphism (Test-
transition(t)) identifies and marks the eligible instances for a given transition.
The variable representing the mark is set to 1 if the associated instance satisfies
the precondition of the studied transition. If several instances can perform
the same transition, the homomorphism produces a state for each concerned
instance with the corresponding mark set to 1.

The homomorphism that implements the actual firing of the transition, (
Fire transition(t)), has to find the 1 valued marks and to modify the state in
respect with the effects of the transition. Such an homomorphism is composed
of basic homomorphisms as described earlier in 5.3.

The complexity of precondition evaluation increases when priorities are at-
tached to transitions. Also the preconditions on theses transitions can depend
on the presence of a message in the local binder and/or a guard. A guard is a
logical expression that can depend on global variables and instance variables.
Composition of operators on homomorphisms can be used to implement se-
lects with priorities. The algorithm figure 1.23 shows how toimplement them.

The advantage of this solution is its simplicity. However the cost of the suc-
cessive evaluations of the different transitions that imply multiple explorations
of the states may be prohibitive in the case of complex alternatives. However,
after profiling, detection of bottlenecks can help determine which homomor-
phisms need to be optimized.

5.4 Example

This example elaborates the homomorphisms needed to handlethe case of
the beginning of methodsstart andget pos in the classTrain. These methods
can be called from statereadyand require the reception of a messagetrain.start

32

Select(T1, ... Tn) sorted by decreasing priority:
currentpriority=priority(T1)
test=null
dddin=input_states
foreach Ti in (T1, ... Tn)
test_i=Test_transition(Ti)(dddin)
test=test+test_i;
result=result+Fire_transition(Ti)(test_i)
if (priority(Ti)<currentpriority)

dddin=dddin-test
currentpriority=priority(Ti)

Figure 1.23. Computing transition firing from an alternative state with priorities.

for methodstartandtrain.get posfor methodget pos. Priority of the transition
b get pos(1) is higher then transitionb start (2).

Based on this example we propose 2 implementations following different
strategies.

First implementation. The first implementation relies on the algo-
rithm proposed in figure 1.23. In this case we just need four homomorphisms.

Precondition evaluation ofb get pos: filters the states where an instance
of the classTrain is in the stateready, (PC==ready) and at least one
train.get posmessage is in the local binder.

Precondition evaluation ofb start: filters the states where an instance of
the classTrain is in the stateready, the instance variableTrain.s== 0
(no speed), and at least onetrain.startmessage is in the local binder.

Firing of b get pos: this homomorphism takes the output of the pre-
condition evaluation ofb get posas input and apply the following. In
the case where multipletrain.get posmessages are in the binder, a state
will be generated for each one of them, and the correspondingmessage
is consumed. For each new state, locals of methodget posand return
value ofPCare pushed on the stack, thePC is set to the next state in the
get posmethod.

Firing of b start: this homomorphism takes the output of the precondi-
tion evaluation ofb start In the case where multipletrain.startmessages
are in the binder, a state will be generated for each one of them, and
the corresponding message is consumed. For each new state, locals of
methodstart and return value ofPC are pushed on the stack, thePC is
set to next state in thestart method.

Then the algorithm in figure 1.23 can be applied to implement the branches.
The homomorphisms that do precondition evaluation need to be applied twice:

Modeling and verifying behavioral aspects 33

once to realize the test (Testtransition(Ti)), and once when composed with the
firing homomorphism to realize theFire transition(Ti) homomorphism.

Second implementation. The algorithm of transition firing with
priorities decomposes the input set of states into sets of states that satisfy pre-
condition(s) for each priority. This means that the evaluation of preconditions
has to be done twice: one to find the states for a given priorityin order to
substract those states from the input set, and one for firing the transitions.

This second approach implements the whole alternative by means of one
homomorphism that takes into account all the priorities of an alternative at the
same time. As soon as a precondition is invalid, the homomorphism in charge
of the evaluation must returnnull in order to invalidate the state under construc-
tion. The homomorphisms that explore the state create new states and carry on
the explorations of these new states in search of potential valid preconditions.
All explorations are discarded as soon as enough information invalidate the
precondition under study. Invalidating conditions are : required message is not
in the local binder, guard is not satisfied, priority is not high enough.

The following steps show how such an alternative can be realized in 2 ex-
plorations.

Step 1: mark all the instances of classTrain in the statereadyand generate
states in order to have only one mark set in each new state. This step requires
the scanning of all the instances of the class Train as the example figure 1.24
shows. This is a basic homomorphism applied in all precondition evaluation
cases involving logical expressions. This constitutes thefirst exploration of the
whole state.

Begin class train section

End class train section

{ {marker
One train instance

Mrk

Mrk

Mrk

Mrk

Mrk

Mrk Mrk

0 0

0 0 1

0 1 0

Figure 1.24. Search for candidate among the train instances.

Step 2and3 are chained and constitute the second pass on the state.

34

Step 2: From the output from step1, explore until finding the local binder
of the marked instance, unmark the instance, generate a state for each message
contained in the local binder. The message is attached to theexploration of
each generated state and is consumed from the local binder. On figure 1.25,
the example shows a case where two messages are in the local binder. These
messages enable the firing of the two considered branches. Guard evaluation
and priorities are needed to determine what is (are) the valid state(s). A state
is created for each considered message and the exploration of the local binder
continues in each new state. Each new state has to be exploredfrom this point
to determine if it is valid, i.e. if it satisfies all the preconditions. Any message
that does not satisfy a precondition is not considered.

{ }

Begin class train instance

{marker

{
{

End class train instance

(consumed MSG2) (consumed MSG1)

Mrk

0

1

LocBinder
1

MSG2
=train.get_pos=train.start

MSG1

Mrk

1

2

LocBinder

MSG1

MSG2

Figure 1.25. Exploring the local binder for relevant messages.

Step 3: This step is directly chained after the end of the exploration of the
local binder done instep 2. The instance variables are fetched and guards at-
tached to the branches are evaluated. If the evaluation of preconditions with
the message attached duringstep 2is positive and the corresponding branch
has the highest priority among the other valid branches, then the state is alive
and the corresponding transition can be fired. If the evaluation of other pre-
conditions using the other messages are of higher priority,then the state is
discarded and will be removed automatically by returning the null homomor-
phism. Figure 1.26 shows the case where all the preconditions are satisfied.
Finally only the priorities will decide which state(s) willsurvive and which
one(s) will disappear.

5.5 Fairness

In our implementation, the fairness issue is addressed by the algorithm that
computes the reachable states. In the lfp model of the Bart, the time has no

Modeling and verifying behavioral aspects 35

End Instances Variables

(consumed MSG2)

Priority([s==0] && consumed train.start)
<

Priority(consumed train.get_pos)

Begin PC and Stack

End Binder Local

Begin Instance Variables

(consumed MSG1)

NULL

0

s

0

s

=train.get_pos =train.start

Figure 1.26. Guard evaluation and destruction of invalid branches.

representation and reachable states that are logically correct but physically im-
possible are computed. To remedy to this excess of computed states and to
insure that all the trains are treated equally, we have decided to separate the set
of transitions into two sets:

the transitions that involve real time, i.e. the transitions that model a
physical change of the system, in our case the simultaneous modification
of the positions of the train,

the other transitions.

This solution avoids the use of a global clock variable, which would cause
an endless computation of new states. It allows some flexibility on the method
used to compute the reachable states, whereas the partitionning of the set of
transition is left to the user.

The reachable states computation algorithm, will compute all the reachable
states from the current position of the train and will ignoreall transition affect-
ing of the physical state of the train. Once all the states have been computed,
the position modification transitions are examined on the set of accumulated
states. These transitions are applied as long as new states can be produced.
Then, the states that reflect the simultaneous update of all trains will be selected
for the next iteration. This filtering process is critical toavoid the generation
of useless states considering the position of trains at different time.

The following algorithm on figure 1.27 depicts the reachablestate computa-
tion with equity. FunctionApply All Transition(T SET,STATES,PROGRESS)
accumulates inSTATESthe states produced by applying all transition con-
tained inTSET. PROGRESSis set to true if new states are produced. The
function returns the accumulated states.

36

FunctionFilter(STATES) filters the set of statesSTATESand retain any
state that is not intermediate. In the present case, all states that represent a
simultaneous update of the positions of the trains are kept and returned by the
function. Additional condition can be added as shown in 5.6

dddin : DDD representing the initial state
T1 : All transitions except the transitions of T2
T2 : All transitions updating the position of a train
NewStates : DDD containning intermediate states computed
during an iteration
AccStates : Accumulated states

NewStates=dddin;
AccStates=null;

while (making_progress)
making_progress=true;
// compute intermediate states
While(making_progress){

NewStates=Apply_All_Transition(T1, NewStates, making_progress);
}

OldAccStates=AccStates;
AccStates=AccStates+NewStates;

making_progress=true;
// update position of trains
While(making_progress){

NewStates=Apply_All_Transition(T2, NewStates, making_progress);
}

AccStates=AccStates+NewStates;
// discard all states that do not update all train position
NewStates=Filter(NewStates);

making_progress=true;
if (AccStates==OldAccStates) making_progress=false;

Figure 1.27. Main loop for state space computation.

5.6 Evaluation

The implementation of the model required the implementation of more than
one hundred transitions and the elaboration and computation on a state that
could contain up to (6×t + 4) processes wheret is the maximum number of
trains.

State space computation. The state space computation has been
executed with different parameters in order to check the impact on the size of
the result.

Modeling and verifying behavioral aspects 37

The experiments were conducted on a 2.2 Giga-hertz Pentium 4machine
with 512M of memory. Two additionnal hypothesis were added to the model
in order to fit the result in the available memory.

First hypothesisH1, assumes that all local communication between a me-
dia and its associated instance are treated before the positions of the trains are
updated. This allows us to discard cases of late asynchronous notification mes-
sages that may lead to wrong decisions in the move controller. These specific
cases could be studied in a separate experiment. This hypothesis is weak in the
meaning that late messages could be considered as invalid. Included inH1 is
the following assumption : theLineManageronly attempts to insert the next
train on the railroad after and before the updating of the positions. The inser-
tion operation takes a short firing sequence that cannot be interlaced with those
updates. Again, a separate experiment could study the impact of interlacing the
train insertion and the updating of positions.

The second hypothesisH2, is stronger and assumes that in addition toH1,
no message resides in any storage (binder, media, local binder) when the posi-
tions of the trains are updated. This second hypothesis is stronger and restricts
the number of computed states because it also affects the global binder. It com-
pletely dissociates the model from the physical representation of the trains and
generates artificial constraints. The results show the impact of this hypothe-
sis even when the size of the global binder is minimal. Including such strong
hypothesis simplifies the model and can help in the debuggingprocess, while
still covering all the transitions in the model.

All the execution were using the same railroad and same trains models. The
physical model was generating 6 positions for the trains andat least 2 cases of
potential collision detection leading to the processing ofemergency situations.

The following tables summarize some of the experiments done. In all cases
presented here, all the accumulated states are stored in memory. The resulting
DDD represents the reachable states of the system under different hypothesis.

ColumnSize Global Binderis the capacity of the global binder.
ColumnSize Local Storageis the capacity of local binders and associated

media.
ColumnAccumulated Statesis the total number of states.
ColumnState max lengthis the maximum length of the state by means of

number of variables.
Column Size DDD(sharing) is the size of theDDD representing all the

states by means of number of nodes. Shared nodes count for 1. Since the
sharing is enabled by default, this is the number of nodes stored in memory.

ColumnSize DDD(no sharing) is the size of theDDD representing all the
states by means of number of nodes as if states were not sharing identical
nodes. Comparison with the previous value can give hints on the quality of the
coding of the state. A good sharing is critical to save memoryspace.

38

Tables shows the impact that binders and media capacities have on the com-
putation of state.

Table 1.1 considers 1 train with hypothesisH1.
Table 1.2 considers 2 trains with hypothesisH2.
Table 1.3 considers 2 trains with hypothesisH1.
The results suggest that the capacity of the local binder andmedia have a

limited impact. The most important parameters are the number of trains, the
hypothesis and the capacity of the global binder. Note that the results in 1.3
were limited due to lack of memory.

Size Global Size Local Accumulated State Size DDD Size DDD time
Binder storage States max length (sharing) (no sharing) (sec)

3 1 10606 118 8343 250405 11
4 1 40099 124 18872 853917 27
5 1 74440 130 29222 1.54e+06 46
3 2 48237 121 10708 994775 17
3 3 62068 121 11320 1.25e+06 21
3 4 63706 121 11165 1.28e+06 21

Table 1.1. Impact of binder and media sizes on state space computation,1 train and H1.

Size Global Size Local Accumulated State Size DDD Size DDD time
Binder storage States max length (sharing) (no sharing) (sec)

3 1 286339 182 101600 1.03e+07 1430
4 1 335827 182 122403 1.24e+07 1874
5 1 347075 182 134551 1.29e+07 2099
3 2 363981 182 97713 1.29e+07 1379
3 3 363981 182 97713 1.29e+07 1378
3 4 363981 182 97713 1.29e+07 1379

Table 1.2. Impact of binder and media sizes on state space computation,2 trains and H2.

Some additional testing aiming at evaluating the impact of the cache and the
garbage collector are ongoing in order to optimize theDDD library.

Model debugging with the DDD implementation. Since all
the states are stored in memory by means of aDDD, properties can be checked
by writing homomorphisms and apply them on theDDD. Among properties or
bug found during the implementatio, one can cite:

Minimum resources necessary to cover all the model : reachable states
computation shown and confirmed that the minimum capacity ofthe

Modeling and verifying behavioral aspects 39

Size Global Size Local Accumulated State Size DDD Size DDD time
Binder storage States max length (sharing) (no sharing) (sec)

3 1 2572353 197 207273 7.61e+07 4023
3 2 50765313 197 237542 1.13e+09 8152
3 3 53812153 197 230360 1.21e+09 8313
3 4 53887381 197 227043 1.21e+09 8283

Table 1.3. Impact of binder and media sizes on state space computation,2 trains and H1.

global binder was 3. If the capacity is smaller than 3 the model is not
covered and all transitions are not alive.

Incorrect specifications : the checking of the reachable states shown
structural bugs in the model, such as dead-lock situations,missing ac-
knowledge messages and incorrect preconditions.

Incorrect synchronization : incorrect synchronization specification be-
tween the media and the instances showed undesired states where the
addresses of media instances are released and reassigned before mes-
sages are purged from the binders.

Corner cases : many corner cases situations were found usingstate space
computations. Among them, we mention : instantiation and destruction
procedures, initialization of the system.

We also validate the critical properties presented in section 3.4 using the
state space generated usingDDDs.

6. Conclusion

In this chapter, we have shown on the BART case study, the approach tak-
ing in input a formal specification of a distributed system intheL f P notation
and computing the state space in order to study properties ofthe system. The
technique used to encode the state space relies onDDD.

This experience has shown that the approach could be automated and that
the result could be used to validate properties on the systems and to identify
bugs and potential problems in the specification.

Even if theDDD library we used for the study presented in this chapter is
at a beta stage, we got interesting results considering thatthe modeled system
contains some difficult elements regarding model checking based approaches:

dynamic instantiation and removal of objects,

complex communication environment involving a dynamic addressing
of objects, synchronous and asynchronous communications,

40

numerous interacting tasks,

emulation of high level mechanisms : remote procedure calls, stacks,
parameter passing,

fairness issues.

Further work on theDDD library will use this implementation of the bart
system to evaluate enhancement on the cache and garbage collector imple-
mentation.

The presented approach is of interest because it consider the verification
problem from the modeling phase, thanks toL f P that offers a reasonable com-
promise between standard and formalization. The idea is to provide a notation
that is closer than the ones engineers are used to (typicallyUML;-). This study
proved that it was possible to model a large and realistic system. Based on this
experiments,L f P has been chosen as a pivot notation in theMORSE project
(french-government founded RNTL program) that group together industrials
partners (Sagem, Aonix) and university laboratories (Labri, LIP6).

References

[Ake78] B. Akers. Binary decision diagrams.IEEE Transactions on Com-
puters, 27(6):509–516, 1978.

[Bos99] P. Bose. Automated translation of UML models of architectures
for verification and simulation using SPIN. In Robert J. Halland
Ernst Tyugu, editors,14th IEEE International Conference on Au-
tomated Software Engineering, ASE’99. IEEE, 1999.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Imple-
mentation of a BDD Package. In27th ACM/IEEE Design Au-
tomation Conference, pages 40–45, Orlando, Florida, June 1990.
ACM/IEEE, IEEE Computer Society Press.

[CEPA+02] J. M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and
P. A. Wacrenier. Data decision diagram for Petri nets analysis. In
Proc. of ICATPN 2002, volume 2360 ofLNCS, pages 101–120.
Springer Verlag, june 2002.

[GKR02] F. Gilliers, F. Kordon, and D. Regep. Proposal for a Model Based
Development of Distributed Embedded Systems. In2002 Mon-
terey Workshop : Radical Innovations of Software and Systems
Engineering in the Future, 2002.

[GLM99] S. Gnesi, D. Latella, and M. Massink. Model checkinguml state-
chart diagrams using jack. In4th IEEE International Symposium
on High-Assurance Systems Engineering. IEEE, 1999.

REFERENCES 41

[IT97] ITU-T. Open Distributed Processing, X.901, X.902, X.903 and
X.904 standard. Technical report, ITU-T, 1997.

[KL02] F. Kordon and Luqi. An introduction to rapid system prototyp-
ing. IEEE Transaction on Software Engineering, 28(9):817–821,
September 2002.

[Lev97] N. Leveson. Software engineering: Stretching the limits of com-
plexity. Communications of the ACM, 40(2):129–131, 1997.

[LG97] Luqi and J. Goguen. Formal methods: Promises and problems.
IEEE Software, 14(1):73–85, January / February 1997.

[OMG99] OMG. Omg unified modeling language specification, version 1.3.
Technical report, OMG, 1999.

[OMG01] OMG. Initial Submission to OMG RFP’s: ad/00-09-01 (UML 2.0
Infrastructure) ad/00-09-03 (UML 2.0 OCL). Technical report,
OMG, 2001.

[QvSP99] D. Quartel, M. van Sinderen, and L. Ferreira Pires.A model-
based approach to service creation. In7th IEEE Computer Society
Workshop on Future Trends of Distributed Computing Systems,
pages 102–110. IEEE Computer Society, 1999.

