Chapter 1

Modeling and verifying behavioral aspects

F. Bréant,

J.-M. Couvreur®,
F. Gilliers,

F. Kordon,

I. Mounier,

E. Paviot-Adet,
D. Poitrenaud,
D. Regep,

G. Sutre

Abstract Design of reliable distributed systems is stretching kniit term of complexity
since existing development techniques are usually not &dturate for this type
of applications. One of the main problem is the gap betweernvéhnious nota-
tions used during development process. EveoMi is an important step for-
ward in this domain, it is not fully suitable for formal degation of distributed
systems.

In this chapter, we present thé P (Language for Prototyping) notation. Itis
dedicated to formally describe distributed (potentiallybedded) systems. We
show howl f P may serve as an input for formal verification using Data Cienis
Diagrams DDD), an extension of Binary Decision Diagrams (BDD) enabling a
compact representation of state spaces. Some aspectsBARE case study
will be presented and we show what type of behavioral pragevte may verify
on this specification.

1. Introduction

The fast evolution of distributed technology has lead tdesys stretching
limits in terms of complexity and manageability [Lev97]. iStgenerates a
major problem when distributed systems have to be certifiEige problem

*Chapter responsible.

2

resides at both the design and coding phases: collectedestnts may be
incomplete, inconsistent or misunderstood and the nunseémerpretations of
a large specification often leads to unexpected implementat

The problem comes from the gap between the various notatiees in the
software life cycle (natural languages, specification leuges, programming
languages). A first solution is to use a methodology progdircoherent set
of notations to solve this problerdML [OMG99] can be considered as an im-
portant step forward in this domain because it proposesnaaitd to describe
a system specification.

However,UML semantics is not sufficiently formally defined to enable for-
mal verification unless strong restrictions and hypothesethe way to use it
are introduced (like in [Bos99, GLM99]). Moreover, the belosal seman-
tics of UML will not be formally defined for several years since versiod 2
essentially formalizes static/structural aspects anedioices OCL to define
constraints precisely. However, only a very limited numiiepages are dedi-
cated to dynamic aspects in [OMGO01].

We consider that, for distributed systenuviL is mostly valuable at early
stages of the software life cycle. When a preliminary ob@@nted solution
is elaborated, there is a need for another type of desamigfimser to imple-
mentation (e.g. that does not rely on complex object orcentaldleware like
CORBA, that cannot be used when time or memory constraitansid-
ered). This new description should enable both formal \eatibn (a well ac-
cepted approach to leverage the quality of distributedesys} and automatic
program generation (to ensure coherence between spdoifieaitd program).
Program generation techniques are out of the scope of thjgehand will not
be discussed.

2. Technical approach and method

Model-based development [QvSP99] focuses on the use of aIntioak
serves as a basis for various purposes: validation, forerdication and au-
tomatic program generation. We share this opinion and denshat it corre-
sponds to an evolutionary prototyping methodology [KL02].

2.1 Methodology

We propose a "model based” development approach [GKRO2¢rzh on
a formal model enforcing strong relations between systerdatireg, formal
verification and implementation for distributed system® Wént to provide:

= transparent access to formal verification techniques tblertlaeir use in
an industrial context without requiring heavy training apekcific skills
as outlined in [LG97],

Modeling and verifying behavioral aspects 3

m strong correspondences between the detailed descrigtiaystem, its
proofs and its implementation. In other wordsvHat you describe is
what you check and implemént

Figure 1.1 outlines our model based development approathirds it into
a "classical” requirement/analysis phase producingsth model. We con-
sider that a reformulation of this initial model to build tbentral model of our
approach is necessary to unify behavioral information #inatdispatched into
severaUML diagrams. Most of the work should be automated but the design
has to add information required for formal verification (eupambiguous de-
scription of the system’s behavior, assertions such as &giver has to provide
an answer”) and for code generation (such as "implememtaticcomponent
< C > isin Java”). Such additional information is sometimes tedain UML
tagged values supported by some CASE tools (and thus patenton stan-
dard). Let us note that the introduction of OCL [OMGO01] in tlast UML
release allows to describe many of these properties (mtbstlpne related to
the system consistency).

result from formal analysis

transformation | formal verification

techniques

@eformulaﬁon

Execution of
code generation distributed programs

result from execution analysis

Figure 1.1. Outline of our model based development approach.

We have introduced f P (Language for Prototyping a high-level modeling
language to detail the specification of a distributed embdds/stem. The
centralLfP model serves as a basis for:

» formal verification of the systemTransformations are driven by vari-
ous verification techniquesformal model, used technigueto produce
views on the systems on which properties can be automatieatified.
Based on results, the central model is updated until all gntegs are
satisfied.

= Tool based implementatioRProgram generators produce the source files
to be compiled and integrated in the target execution enknent. This
step is out of this chapter’s scope.

4

2.2 LfP

LfPis a formally defined graphical Architecture Descriptiombgaage with
coordination facilities focusing on (potentially embedydistributed systems.
It enhances an existingML model with information enabling formal verifica-
tion as well as automatic program generation of distribytetyrams. To do
so, we define three complementary views:

m The functional viewdescribes the system behavior in terms of execu-
tion workflow of connected components and the coordinatietwben
component instances. It also describes the system sofexeingecture.

= Theimplementation viewescribes the system implementation constraints
(target execution environment, used programming langueige) and
the deployment topology.

m Theproperty viewspecifies properties to be verified by the system. Such
properties are stated by means of invariants (for examplehéck mu-
tual exclusion), temporal logic formulas (for example, teck avail-
ability or fairness of a service) or any other statemena$lst for formal
verification. This view can be exploited to perform comptssisted
formal verification but also introduces relevant inforroatfor code gen-
eration (e.g. runtime checks).

A small example. Let us present a simple client/server system to
illustrate someLfP features. Clients interact with a server offering a set of
services: Start Session(yeturning a session idd_Service(sid, sperforming
services on sessiorsid andEnd.Session(sidglosing sessiosid. Figures 1.2

and 1.3 present thgML class diagram and a sequence diagram for this system.

et
Start_session() !
gl
1
- * 1 A_Service(sid) 1

Client _

— o -
End_Session() |

Figure 1.2. Example: the class diagram. Figure 1.3. Example: a sequence diagram.

The architecture diagram. The architecture diagram reproduces the
original UML Class Diagram structure enriched with information comprising

Modeling and verifying behavioral aspects)

important elements such as the logical communication strivature between
classes or instanciation of classes. This infrastructutied root of a hierarchy
of diagrams defining the behavioral contract for each corapbof the system.

-- Global declarations

-- Constant to parameterize the Session_Id type
const Max_Session : integer := 100;

type Session_Id is range (1 .. Max_Session) of integer;
-- Static instances of classes
static_instanciation : S : serveur with ();
static_instanciation : C_1 : client with ();
static_instanciation : C_2 : client with ();
static_instanciation : C_3 : client with ();
static_instanciation : C_4 : client with ();
static_instanciation : C_5 : client with ();

=

all

e e | Rl

Client.s is CS_Chan.cl Server.c is CS_Chan.sv
0 20
FIFO

Figure 1.4. LfP architecture diagram of the example.

Figure 1.4 presents the architecture diagram for the ¢ienter example. It
introducesCS_Chan, the media describing communication semantics (behav-
ior of communication elements). This media is connectedasses by means
of binders (inspired from binding points in RM-ODP [IT97]J£S_Chan de-
clares two portsgl andsv. Some characteristics of these ports (such as capac-
ity) are defined in the architectural diagram (the right einig a FIFO buffer
that can hold up to 20 messages). Binders connect commiamqatrts pro-
vided by classes and media: in the figure, the pbftom CS_Chan is linked
to portsfrom Client.

The architecture diagram of Figure 1.4 also defines thalriitstances for
the system: 1 server and 5 clients. Finally, global types@mtants may be
defined; they are visible on the entltéP specification.

Binders define the interaction between a class instance aratia instance
(e.g. buffering characteristics). They contain inforraatregarding the ca-
pacity of associated buffer and a cardinality specifyingh# corresponding
buffer is shared between instances of connected classes. drat us illustrate
how the cardinalities of this model should be interpreteiufe 1.5 shows
relations between a class and a media and Figure 1.6 showsftilded inter-
connections after instanciation. We consider three instsmof classeé and
B and two instances of medi1 andM2. Cardinalityl means that all con-
nected class instances has its own binder wdtilemeans that connected class
instances share one binder.

Behavioral contract of a class. LfP behavioral diagramsL(fP-
BD) rely on a sequential state machine notation to unambigjyodescribe

1 |
FHHC) FaTH|

R =

al M2-1

| . M2-2

Figure 1.5. Examples of class connections. Figure 1.6. Connections of the instances.

all types of behavioral contracts irf P. The behavioral contract describes the
activation conditions of triggers and methods and is defusdg alL f P-BD.
Figure 1.7 presents the protocol for tBerver class; the scenario of Figure 1.3
is contained in this diagram.

begin

Start_Session
-- Prototypes

function Start_Session () return Session_|d;
procedure End_session (si : in Session_|d);

A_Service si synchrony procedure A_Service (si : in Session_ld);

-- Variable (shared if there are several instances
-- of the server)

End_Session shared Nest_Session: Session_Id := 1;

end

Figure 1.7. Behavioral contract of the Server class.

The declarative part Berver defines three methodStart_Session, A_Service
andEnd_Session. The first two methods are synchronous since one is a func-
tion (a return value is expected by the invoker) and the sttome is stated so.
The last method is asynchronous. Asynchronous methodsbaysbcedures
with read-only parameters.

VariableNext _Sessi on is also declared to be shared by all server instances.
It also declares a binder referenedp be linked to a binder in the architecture
diagram § is linked withsv in Figure 1.4). In the state machine transitions are
represented by squares. These transitions corresponddthadrto be invoked

Modeling and verifying behavioral aspects 7

by some other class that belongs to the system or to a triggee tiutomat-
ically executed when a given condition is locally satisfifithese transitions
are a link to the behavioral contract of the correspondinghoee Figure 1.7
shows that, once it is started with a given session identtieiserver instance
executes several times the methodervice and ends wheiEnd_Session is
invoked.

Behavioral contract of a method. Methods have their own behav-
ioral contract, also represented uslaP-BDs. These diagrams have a unique
initial state and at least one terminal state.

Figure 1.8 shows the contract 8fart Session. This method is protected
with a semaphorenfutex) because it manipulates the shared variabig _Ses-
si on. Transitioncreate_next_server references th&erver constructor and cre-
ates a new instance of server when fired. This instance waill 6 execution
at the initial state of the class behavioral contract.

b_startsession

» F—>O—P

begin &s; a mutex

-- The function prototype

Next_Session := Next_Session + 1; . N " .
function Start_Session () return Session_|d;

create_new_server

ns := server (); -- We temporarily need a reference to a
-- new instance of server
&s return (Next_Session); d ns:server;
e_startsession J
@O~
end mutex e

Figure 1.8. Behavioral contract of methdgtart_Session.

TheLfP-BD of Figure 1.8 also references thdinder defined to be an in-
terface to other components. Sirg@tart Session is a method, it is activated by
an incoming request, referenced as a preconditiandgtartsession. A return
value is sent back to the emitting client before releasirddbke_startsession.
Let us note that the address of the invoking client is hanbettheL f P runtime
and used to route the corresponding message. Here, thesdlassnnected
to a set of media by means of ports as specified in the Architeatiagram
(Figure 1.4).

Description of a media. Media have no method. The associatddP-
BD describes the communication semantics to be supportgdreF1.9 shows
the very simple behavior of med@s_Chan that only relays information from

8

client to server and vice-versa. This media typically reprds a simplified
socket-like mechanism.

-- Variables to store messages

M_cl, M_sv : message;

-- to enable/disable reception
enable_cl, enable_sv : boolean := true;

Get_cl [enable_cl]] Put_sv

< E < > >
&cl []:M_cl; &sv []:M_cl;

enable_cl := false; enable_cl := true;

> <€

enable_sv := false; enable_sv := true;
&sv []:M_sv; &cl []:M_sv;

- Get_sv EI[‘enablefsv] '\—lPut_cI ”

Figure 1.9. Behavioral contract of medi@S_Chan.

Let us note that an instance 66_Chan transports only one message at
a time in a given direction (fromel to sv and vice-versa) ; this is ensured
by the guard involving the boolean variables on transitiGascl andGet_sv.
A message is stored in a variable according to its directiol (or Msv) ;
and then delivered when transitionsand sv are fired. The typaressage
is predefined and represent any message computed from thidlpamethod
invocation declared in a model. A binder cannot access tatment of a
| f p_message. When it is necessary (e.g. to route the message), the media
have to declare discriminantto be explicitly set when sending a message
through a binder. Such a mechanism is presented later ichhjster.

2.3 Operational semantics of LfP

Operational semantics defines the rules necessary to mowvedne pro-
gram state to another. In this sectidufP semantics is clarified.f P allows to
define high-level actions that must be decomposed sinceuhigglly involve
actions from distant objects. For instance, several messegn be sent (or
received) within a singléfP transition. Such a transition has to be splitted
because it cannot be considered as atomic. The number dfingstiansi-
tions, each one corresponding to an atomic action, is equilet number of
messages sent (or received).

In the following, a state of &fP program is characterized, and the associ-
ated operational semantics is further described.

Modeling and verifying behavioral aspects 9

State of a LfP program. We are now in position to define precisely
the constitutive elements oflaf P program state. For classes and media, the
elements composing their state can be easily deduced frosptctification.

‘ Global information ‘ CIasa instances and local medi%l

Clas§] instances and local medi%l

‘ Program counter‘ Parameters‘ Local variables‘ ‘ Program counter‘ Parameters‘ Local variables‘

Figure 1.10. LfP state description

A state (Figure 1.10) is made of global and local to classgalas. Binders
with capacityal | are global information, since they are not linked to any par-
ticular class instance. For the same reason, media thatoamutomatically
instantiated are also considered as global informatiomrEking else is con-
sidered as local to classes information.

The part of the state describing classes contains:

» variables shared by all instances and the related locks ¢lass vari-
ables),

m class instances information (variables, program coustack when meth-
ods are invoked),

» binders with capacity linked to each instance class,

= every media dynamically instantiated with each class ntsta

Semantic of a LfP program. In this subsection, we describe how,
from a given state of &f P program, a new state can be reached.

The atomic transitions considered here systematicallyifyn@dprogram
counter. They can also assign variables, read or write orssage. However,
atomic transitions can be classified, depending on theimgnpn the state:
method invocation or ending, trigger invocation or endimgssage sending or

10

reception... First of all, we describe a simple transitibattonly performs a
variable assignment, then we study how other kind of treomsitmodify this
basic schema.

The execution of this simple transition is bound to the fatiton of a guard
(if not specified, the guard expression is setitae). Executing a transition is
done in two steps: evaluating if the transition can be exatand execution of
the transition.

The transition can be executed if:

= the program counter has the right value,
= no lock constraint prevents the execution,

m the guard is satisfied.

Executing the transition means:

locking variables if needed,

execution of the assignment instruction,

unlocking variables if needed,

updating the program counter value.

If the transition is a trigger invocation, there is no assignt instruction to
perform. Instead, a new level is added to the stack, wherprtsggam counter
and the parameters are initialised. The program countdreoptevious level
is set to the trigger return value.

A trigger/method ending is a transition that puts the progunter to
the trigger/method end place. In this case, an extra acsigeiformed: the
current stack level is destroyed. If the stack is empty leeflstruction, then
the instance is destroyed together with its local bindedsraedia.

A transition that receives a message must verify before uieg that a
message is ready to be received:

= inthe corresponding binder if the communication is asyobus (binder
capacity is strictly positive),

m a transition sending the message must be ready to fire in symais
cases (binder capacity is null)

After this verification, the transition performs an action:

= assign values received in the message to variables, ifahsition wait
for a method resuilt,

Modeling and verifying behavioral aspects 11

= adds a new level to the stack, just like a trigger invocatrangition, if
the transition is a method invocation.

After this action:

m the message is removed from the binder if the communicai@syn-
chronous,

= the two transitions are simultaneously fired otherwise.

If the transition creates an instance, the action perforiméuk creation and
initialisation of the instance and the related local bisdend media.

24 DDD

Verifying safety properties on laf P program basically reduces to comput-
ing the program’seachability setthat is the set of all states that can be reached
(along some path) from the program'’s initial states. Thehahility set can be
very large, scompact representatiorier sets of states are needed. Moreover,
efficient operations such as equality test, set-theorgi@raiions, and oper-
ations corresponding tbf P instructions are also required on these compact
representations in order to compute the reachability setta Decision Dia-
grams satisfy all these requirements, and they have beeessfally applied
to the verification of the BARTLfP description.

Data Decision Diagram¢DDDs) aresuccinctdata structures for represent-
ing finite sets of assignment sequencethe form(e; :=xg;6 :=Xo; -+ ;6=
Xn) Whereg are variables ang are values. When an ordering on the variables
is fixed and the variables are boole@mDs coincides with the well-knovBi-
nary Decision Diagram$Ake78, BRB90]. If an ordering on the variables is
the only assumptiorpDDs are the specialized version of theilti-valued De-
cision Diagramgepresenting characteristic function of sets. For Datddimt
Diagram, we assume no variable ordering and, even more athe sariable
may occur many times in an assignment sequence, allowingefiresenta-
tion of dynamic structures: for a stack variableghe sequence of assignments
(a:=xg;a:=Xg;---;@:= X,) Mmay represent the stack contemx, - - - Xn.

Traditionally, decision diagrams are often encoded assietirees. Inter-
nal nodes are labeled with variables, arcs with values @faithequate type)
and leaves with eithed or 1. Figure 1.11, left-hand side, shows the decision
tree for the se6= {(a:=1;a:=1),(a:=1;a:=2;b:=0),(a:=2;b:=3)}
of assignment sequences. As usualeaves stand for accepting terminators
and0-leaves for non-accepting terminators. Since there is saragtion on
the cardinality of the variable domains, we consideas the default value.
Thereforeo-leaves are not depicted in the figure.

12

Figure 1.11. Two Data Decision Diagrams.

Unfortunately, any finite set of assignment sequences tdrenepresented.
Thus, we introduce a new kind of leaf label: for undefined Intuitively, T
represents any finite set of assignment sequences. Fidureight-hand side,
gives an approximation of the st {(a:= 2;a:= 3)}. Indeed, an ambiguity
is introduced since after the assignmeant= 2, two assignments have to be
represented:a := 3 andb := 3. These two assignments affect two distinct
variables so they can not be represented, as two distinstaartgoing from
the same node cannot be labeled with the same value (in oth@isywnon-
determinism is not authorized in the decision tree).

We now give an overview of Data Decision Diagrams. For a mormél
and detailed presentation of DDDs, we refer the reader t¢?fCB2].

Syntax and semantics of DDDs. In the following, E denotes a set
of variables and for anye in E, Dom(e) represents thdomainof e.

Definition 1 (Data Decision Diagram) The seiD of DDDs is inductively de-
fined by de ID if:

m de{0,1,T}or
» d=(eq) with:
—ecE
— o :Dom(e) — ID, such that{x € Dom(e) |a(x) # 0} is finite.
We denote e* d, theDDD (e, a) with a(z) = d anda(x) = 0 for all x # z.

Intuitively, aDDD can be seen as a treeDDs 0, 1 and T are leaves, and
aDDD of the form(e,a) is a tree whose root is labeled with variateleand
with an outgoing arc labeled wittito a subtree (x) foreach valuece Dom(e).
From a practical point of view, as non-accepting brancheslfranches ending

Modeling and verifying behavioral aspects 13

with a 0-leaf) are not encoded, the “finite support” condition doensures that
DDDs can be implemented (even when variables range over inflaiteains).

Recall thatDDDs represent finite sets of assignment sequences. An im-
portant feature obDDs is the capability t@pproximatesets of assignment
sequences that are not exactly representable, usingnttefineddDD T. Ac-
tually, T representany set of assignment sequences, so in other words,
itself is the worst approximation of a finite set of assigntrsaguences.

More precisely, theneaning[d] of aDDD d is a set of finite sets of assign-
ment sequences. In particuldr | is the (infinite) set of all finite sets of ass-
signment sequences. Whéndoes not appear in@DD, the DDD represents
a unique finite set of assignment sequences (i.e. its meaniagingleton).
Hence, such ®DD yields an exact (non approximate) representation and it is
calledwell-defined

The unique set in the meaning of a well-defiraD d is the set of assign-
ment sequences corresponding to accepting branches (amches ending
with a 1-leaf) in the tree representation @f In particular, we hav§o]] = {0}
and[[1] = {{()}} (where() is the empty sequence of assignments).

When aDDD is not well-defined, its meaning consists in several finits se
of assignment sequences, and one of them is the finite sesighasent se-
guences being represented. Hence, subb@ yields an approximate repre-
sentation. The meaning of an ordin@®D d intuitively corresponds to the set
of meanings of all well-definedDDs that can be obtained frodhby replacing
each occurrence of with some well-definedDD.

Clearly, if twoDDDsd andd’ satisfy|[d]] C [d']] thend is more precise than
d’ since there is less ambiguity ohthan ind’, and we say thatl is better
definedthand’. Two DDDs are said to bequivalentwhen they have the same
meaning.

Equivalence checking fapDDs is crucial wherbDDs are used to represent
sets of states. FortunatelpDDs admitcanonical formsso that equivalence
checking forDDDs in canonical form reduces to (syntactic) equality. Intu-
itively, from the tree representation point of view, the @aical form of aDDD
is obtained by replacing withall sub-trees that have onlyleaves. TwadDDs
in canonical form are equivalent if and only if they are eqbdbreover, every
DDD is equivalent to &DD in canonical form.

In the following,we only considebDDs that are in canonical form

Operations on DDDs. First, we generalize the usual set-theoretic oper-
ations —sum(union), product(intersection) andifference- to finite sets of as-
signment sequences expressed in ternixdafs. The crucial point of this gen-
eralization is that albDDs are not well-defined and furthermore that the result
of an operation on two well-defindaDDs is not necessarily well-defined. The

14

sum+, theproductx and thedifference\ of two DDDs are inductively defined
in the following tables. In these tables, for any {+, ,\ }, a1 o0 stands for
the mapping in Dorfe;) — ID defined by(aj ¢ 02)(X) = ai(x) o az(x) for all
x € Dom(ey).

% [o0 [1]T] (e2.02) |
0 0 17T (e2,02)
1 1 1|7 T
T T T T T
(ep,01402) ifep=e
(er,01) || (e, 1) | T | T T ife#e
| " [O]Z]T] (e2.02) |
OV(e,a)=0[] 0[O0 O 0
1 ol 1T 0
T ol T | T T
(er,a1x0p) ifep=e
(er,az) oj o0 T 0 ife#e
v [o0 [1 [7] (,02) |
0 0 0 0 0
1 1 0 T 1
T T T T T
(er,a1\02) ifer=e
T .
(e1,01) || (e1,00) | (e1,01) (er,01) ifer#e

These set-theoretic operations bhDs actually produce the best possible
approximation of the result. More preciselydindd’ are twoDDDs, then the
sumd +d’ (resp. the produdl «d’, the differenced \ d’) is the “best defined”
DDD whose meaning contains the $& S |Se [[d] andS € [[d']} (resp. the
set{SNS|Se[d], S € [[d']}, the sef{ S\ S |Se [d]] andS € [d']}).

The concatenation operator defined below corresponds tmwtieatenation
of language theory.

0 ifd=0vd =0
d’ ifd=1
—
d-d=9 1 ifd=TAd £0
(ea-d) ifd=(g0)

Notice that anypDD may be defined using constantst, T, the elementary
concatenatioe—*.d and operator-, as shown in the following example.

Example 1 Let dy be theDDD represented in left-hand side of Fig. 1.11, and
ds the right-hand side one.

al, +a?b 31

da
dg

at.1+a?b %1
= at,(ati1+a?pb%1)+a’T

Modeling and verifying behavioral aspects 15

Let us now detail some computations:

data2a31 = al(alit+a?b%1)+a?, (bi>1+ai>1)
= al(alita?b%1)+a’lT
— ds
1 2 _ _ 1 2 _ 1 _
(a_>1*a_>1>*‘l' — 0+T=0#al.1« (a_>1*'l'> —al1«T=T
da\ds = a2, bil\r) —a 2T
dg-c.*1 = al, ai>ci>1+ai>bi>ci>l> +a2,T

Homomorphisms on DDDs. In order to iteratively compute the reach-
ability set of anLfP program, we need to transldtdé P instructions intcdDDD
operations. These complex operationstipDs are described by homomor-
phisms. Basically, an homomorphism is any mappinglD — ID such that
®(0) = 0 and such thatp(d;) + ®(d,) is better defined tha(d; + dy) for
everyd;,d, € ID. The sum and the composition of two homomorphisms are
homomorphisms.

So far, we have at one’s disposal the homomorphdsnid which allows to
select the sequences belonging to the give d; on the other hand we may
also remove these given sequences, thanks to the homomsrordii d. The
two other interesting homomorphisms-ldi andd - Id permit to concatenate
sequences on the left or on the right side. For instance, alwigsed left
concatenation consists in adding a variable assignmestx; that is denoted
e 2%,1d. Of course, we may combine these homomorphisms usingutime s
and the composition.

However, the expressive power of this homomorphism fansljimited;
for instance we cannot express a mapping which modifies gigrament of a
given variable. A first step to allow user-defined homomasphi is to give
the value of®(1) and of®(e_*.d) for anye_*.d. The key idea is to define
®(€,a) aSY yepome) P(e-a(x)) and®(T) = T. A sufficient condition fod
being an homomorphism is that the mappid®, x) defined aspb(e,x)(d) =
®(e_*.d) are themselves homomorphisms. For instaitgge,x) = e*%1d
andinc(1) = 1 defines the homomorphism which increments the value of the
first variable. A second step introduces induction in thecdpson of the ho-
momorphism. For instance, one may generalize the increaparation to the
homomaorphisminc(e;), which increments the value of the given variable
A possible approach is to sieic(e;) (e,x) = e*31d whenevere = e; and oth-
erwiseinc(ep)(e,x) = e-Xsinc(e1). Indeed, if the first variable sy, then the
homomorphism increments the values of the variable, otiserthe homomor-
phism is inductively applied to the next variables.

The formal definition of inductive homomorphisms can be fbim{CEPA*02].
The two following examples illustrate the usefulness osthkomomorphisms

16

to design new operators @DD. The first example formalizes the increment
operation. The second example is a swap operation betweewariables. It
gives a good idea of the techniques used to design homonsanpHor some
variants of Petri net analysis.

Example 2 This is the formal description of increment operation:

x+1 . o
incle)(ex) = 4 ¢, 19 - fe=a

e——inc(e;) otherwise
inc(er)(1) = 1

Let us now detail the application of inc over a simpleD:

aLiinc(b)(b-2.c3.d-%.1)
= a b 3idc2d-4.1)
= alb3c3d?1

inc(b)(a-t.b-2.c3.d%.1)

Example 3 The homomorphism swém,) swaps the values of variableg e
and e. It is designed using three other kinds of homomorphismesanmete;),
down(ep, 1), up(ei,x1). The homomorphism renaifeg) renames the first
variable into g; down(e;,x;) sets the variable seto x and copies the old
assignment ofin the first position; upe;,x;) puts in the second position the
assignment £= x.

renaméey) odown(er,x) ife=e

renamée;) odownep,x) ife=e
swafe;,e)(ex) = {

. ‘

e swape, &) otherwise
swale;,&)(1) = T
renamée;)(ex) = e ——Id
renamée;)(1) = T

X X1 i
_ e—e—ld ife=e

down(es,x1)(ex) = { up(e,x)odown(e,x;) otherwise
down(e;,x1)(1) = T

e e L 1d

T

up(er,x1)(e x)
up(er,x1)(1)

Let us now detail the application of swap over a sinpiED which enlights
the role of the inductive homomorphisms:

(b-2.c3.d-4.1)
odown(d,2)(c—2.d-%,1)
oup(c,3) odown(d, 2)(d—2,1)
a_1.renamégh)oup(c,3)(d—4.d_2.1)
a-L.renaméb)(d—%.c3,d_2,1)

= alb%c3d?2a

swapb,d)(a-t.b-2,c3,d-%1) = al.swagb.d

a_L.renaméb

a_L.renaméb

1

Modeling and verifying behavioral aspects 17
One may remark that swép e)(a—1.b_2,c 3.d_4,1)=a 1, 7.

Implementing Data Decision Diagrams. In order to write ob-
ject oriented programs handlim@gpDs, a programmer needs a class hierarchy
translating the mathematical conceptsDafDs, of set operators, of concate-
nation, of homomorphisms and of inductive homomorphisntes€g concepts
are translated in our interface by the definitions of thress#s DD, Homand

I nduct i veHom) where all the means to construct and to hamb®s and ho-
momorphisms are given. Indeed an important goal of our wero idesign

an easy to use library interface; so, we have used C++ owtbaperators in
order to have the most intuitive interface as possible.

From the theoretic point of view, an inductive homomorphi®nis an ho-

momorphism defined by BDD ®(1) and an homomorphism famil(e, x).
Inductive homomorphisms have in common their evaluatiothogand this
leads to the definition of a class that we nanheduct i veHomthat contains
the inductive homomorphism evaluation method and giveterm of abstract
methods, the components of an inductive homomorphi®t:) and ®(e,x).
In order to build an inductive homomorphism, it suffices tdirtke a derived
class of the classnduct i veHomimplementing the abstract method$1) and
d(e Xx).

The implementation of our interface is based on the thrdeviahg units:

= A DDD management unit: thanks to hash table techniques, it ingiesnm
the sharing of the memory and guarantees the unigquenes afet
structure of thedDDs.

= An HOM management unit: it manages data as well as evaluatiih-
ods associated to homomorphisms. Again the syntactic anigs of
a homomorphism is guaranteed by a hash table. We use the rudtio
derived class to represent the wide range of homomorphipasty

= A computing unit: it provides the evaluation of operatiomstioe DDDs,
as well as the computation of the image @m@D by an homomorphism.
In order to accelerate these computations, this unit usesparation
cache that avoids to evaluate twice a same expression dudamputa-
tion. The use of cached results reduces the complexity afsatations
to polynomial time. Since inductive homomorphisms are -akefined,
we cannot express their complexity.

3. Inputs taken from the BART case study

In this section we describe the hypotheses of the BART systemmonsider
and add some when necessary.

18

3.1 The railroad system model.

We focus our study on the behavior of trains on a single railivee. This
line is not circular and is identified by a starting and an egdioint. Trains
always enter at the starting point and leave at the endingt.pdVe do not
consider the possibility to enter and leave the line at ahgrgboint. Therefore
we consider unidirectional lines that do not share any pdtt other lines.
It is possible to take into account bidirectional lines wityo unidirectional
lines and to concatenate these bidirectional lines to dengihared sections.
In this case we must consider a new policy to enter and leavdirth.A line
connects several stations where the trains must stop. Hyps¢heses precise
the global description of the Bart system given in Pa&r.

Physical characteristics of the line and trains are knowhexpressed us-
ing a simulation model used to stimulate the modelled sysidme simulation
model allow to compute possible accelerations and dedgesaof trains re-
garding their current position, speed and characteristics

3.2 The UML model

According to the hypothesis presented in the previous@gctiie propose
an architecture that is first sketched usingJati Class Diagram presented in
Figure 1.12. It contains 7 classes:

m Extern_data stores the simulation model of the real world. This infor-
mation is made available to other classes by means of ancapph
programming interface that generates the data used to &aisi@hs.

= Operator represents the operator who starts the system, may seb it int
alert mode (all train have to stop then) and sets back themsytst normal
mode (trains may circulate).

= Line_Manager handles one line. It lets trains enter and acknowledge
when they leave the track.

= Train represents the controller on each train. This controllenrooini-
cates with the watchers that handle motions control andsomil check-

ing.

= Move_controller and Anti_collision_system are the watchersMove_con-
troller insures that the train is going forward and stops at statigns_col-
lision_system checks that the current situation cannot lead to a collision
with the front train. Each train has its own instances of wats.

= Comm represents the communication system. It has its own addgess
mechanism : a unique address is explicitely affected to amponent of

Modeling and verifying behavioral aspects 19

the system (except faxtern_data). All classes communication (except
for Extern_data) are handled bZomm.

1 Extern_data
1 h

s . . .
[Train] [Anti_collision_system | [Move_controller }——

‘ *

‘1 1 1
[Line_manager
T

1
1
3 Comm
i E

1 operator 1

Figure 1.12. UML Class Diagram of the BART speed management system.

3.3 Specification of components and their
interactions.
Components. TheLine_Manager adds trains at the begining of the line

and suppresses them when they reach the end. It also alertsaiths when
a manual alarm is raised (all train have to stop) and infotmesnt when this
alarm ends (the system may restart). Tine_Manager is the only component
to communicate with all others.

To each train is associatedMove_controller and anAnti_collision_system.
TheMove_controller manages the motion of a train with respect to its position,
speed and its distance to the next station. Aecollision_system ensures that
a secured distance remains between the train and its pssteaen the track
; it instructs theMove_controller when an emergency is detected, forcing the
train to stop).

In each train, an embedded calculator updates the speechambsition
with respect to the decision of thdove_controller. We identify each calculator
with its associated train. The location of thieve_controllers and anti-collision
systems is not given. They are grouped in several centeescdinmunication
services require knowledge of communication ports atébéheMove_con-
trollers and anti-collision systems independently of their lamatitherefore it
is not necessary to define precisely what a center is.

Activation of components. We consider an interleaving execution
semantics. Only one action is performed by one componentgatea step.

20

All possible actions interleaving are considered, all fmesexecutions are
thus studied.

Atrain and its associated components (the correspondstgrine ofnti_col-
lision_system andMove_controller) are executed in an infinite loop. A step of
the loop is performed during one time unit. The actions peréal are ordered
according to the following sketch:

= The Move_controller notifies the calculator of the speed maodification to
apply to the train.

m The calculator computes its new speed and position andtitsmthem
to theMove_controller and to the anti-collision system.

= The anti-collision system checks if a collision may happea (if the
train and its predecessor are too close, an urgent stop éssey).

When a problem is detected, components perform the follpwitions:
m TheAnti_collision_system informs theMove_controller of the problem.
m TheMove_controller orders thelrain to stop immediately.

m TheTrain stops as fast as possible.

Component’s communications. To be independent of location con-
straints, we consider communication services that assoaidresses to the
processes and not to their physical location. If we conditecommunication
between the processes that manage the supervising of amichthe train itself,
we have to give an address to the train (calculator)Mbee_controller and the
anti-collision system. Whatever their physical locatisnthe communication
services ensure that their address are not modified. Ther&fove_controller
and anti-collision system can migrate from a center to aroth

We assume that communications are both safe (no messag#)iand fast
regarding actions to be performed.

3.4 Properties of the system
The system has to verify the following critical properties:
= Each train stops at each station.
m Trains start with specified condition.
= No collision is possible.
= Speed limits on each sections of the railroad are respected.

m Resources are sufficient for the correct execution of theesys

Modeling and verifying behavioral aspects 21

We consider that these properties have to be verified foreasgastem. We
also consider some additional properties:

= No deadlock situation can occur.
= Synchronous and Asynchronous communications are corigatiormed.
= Emergency situation are correctly handled.

m Insertion and removal of trains from the line are correctguenced.

Once the computation of reachable states is performed,amessify prop-
erties by implementing the homomorphism that will verify @responding
assertion. We will address again the verification of praperin the experi-
ment section 5.6.

4. Applying the approach to the case study
4.1 The LfP diagrams

We present in this section the P diagrams describing the BART system.
The full model is too complex to be presented here but we tesleseveral rel-
evant diagrams, which demonstrate characteristidsf 8ffrom the modeling
and analysis point of views.

The architecture diagram. Figure 1.13 shows thef P architecture
diagram that is deduced from tl/L Class Diagram of Figure 1.12. Going
from one to another show how some UML problems may be solved:ig-

ure 1.12, the communication system was modeled using a dfgsspropose

to make it aLfP media. A similar problem is raised by relations connected
to Extern_data. No communication mechanisms is explicitely stated afif
requires a media herén{ine_access).

Let us now explain the declarative section:

= A set of constants are declared and may be used everywhehe in t
model. This is a way to easily change some parameters.

= Several types are declared and may be used everywhere irothad.m

m LfP allows both static and dynamic instanciation of classesraedia.
Operator andExtern_data are the only class to be statically instanciated
in the system. In both case, no context is provided and defaliles of
local variables are usedhline_access is also statically instanciated but
Comm instances are created dynamically according to the claskdsd
via the bindem_out Thus, an explicit association is expressed : each
instance ofComm is associated to a given instance of either clasds,

22

-- Constants
define max_speed = 100;

- define max_position = 100000;
. define max_distance = 10000;
Extern_data.io is Inline_access.server Inline_access.client is all.io define max_train = 40;
define max_adr = max_train * 3;
define no_adr = 0;
define adr_Inmgr = 0;

-- Types
type t_speed is range 0 .. max_speed;
type t_position is range 0 .. max_position;
type t_distance is range -1 .. max_distance;
type t_trainid is circular

range 0 .. max_train;
1 type t_adr is circular range 0 .. max_reg;

] Comm | . . .
i3 I—»(m I --Declaration of static classes instances

all.m_out is comm.m_in all.m_in is comm.m_out Operator 1 with (),
all Extern_data : 1 with ();
1 -- Declaration media instances
- Inline_access : 1 with ();
Line_Manager Comm : using_binder out;
--Characteristics of binders
Inline_access: (server => 0, blocking, fifo,
client => 0, blocking, fifo);

Comm: (r => 0, blocking, fifo

u => 0, blocking, fifo

in => 5, blocking, bag

out => 5, blocking, bag);

A A
Anti_collision_system | | Move_controller

Line_manager.u is comm.ureg

all

all.r is comm.reg

Figure 1.13. LfP Architecture diagram of the BART speed control system.

Anti_collision_system, Move_controller or Line_Manager and models the
channel related to it.

m Binder characteristics are also expressed : their size ahdvibr. A
binder stores and reads messages with no particular order.

Class Train. Its behavioral contract is presented in figure 1.14. When an
instance offrain is created, it starts in stateeginand automatically gets into
the line at its starting point (activation of triggir line). At stateready, the
train speed is 0 and its position is set to the position of #yeadture station.
Since a train must always be able to procegstgposrequest, this method can
be fired from all running statesefady, movingandstopped. Let us note that
values in input arcs always give the highest priority to thisthod.

To leave stateeady, a Train instance has to execute tetart method that
sets the current speed to the minimal possible value. Theimstance reaches
the statemoving All methods butget poshave the same priority (inputs arc
get value 2). Methodccelerates fired when the train is allowed to increase
its speed (the speed limit is not reached and there is suffisigace before
the previous train or the station to let the train stop). Methktableis acti-
vated when the limit speed is reached but nothing requiredr#in to stop.

Modeling and verifying behavioral aspects 23

-- Prototypes
procedure start (s:inout t_speed; p:inout t_position);
procedure stable (s:inout t_speed; p:inout t_position);

procedure decelerate (s:inout t_speed; p:inout t_position); -- Instance variables
procedure fast_decelerate (s:inout t_speed; p:inout t_position); s it speed = 0;
procedure stop (s:inout t_speed; p:inout t_position); P 1LPQS|}I0” =05
procedure get_pos (p:inout t_position); t:t_trainid := 0;

mr, ar, oar :t_adr;
trigger in_line();
trigger check ();
trigger exit_line();
get_pos get_pos

i il
in_line 2 check

moving

Figure 1.14. LfP Behavioral contract ofrain.

The main difference betweeatecelerateandfast deceleratds the deceleration
factor applied to the train deceleratecorresponds to a "normal” brake when
fast deceleratadoes not care about passenger comfort and equipment stgess (
mentioned in Par?).

To leave statenoving it has to execute thstop method that can only be
activated if current speed is set to the minimum possibleedVhen the train
is stopped, it can either exit the line (triggedit_line) if its position corresponds
to the last station in the line or execute triggdreck(i.e. be sure that no
passenger is blocking a door) to come back into a state wheas imove to
the next station.

begin b_in_line end

[¢ ®

&m_out: [mr]move_controller.ack () ;

Figure 1.15. LfP-BD for triggerin_line.

24

Figure 1.15 shows the behavior of triggarline that is very similar to the
two other onesdheckandexit line). The unique transition notifies the current
action to the associated instanceMifve_controller.

The two methods we now present are representative of Glaias Method
start (figure 1.16) is very similar in its structure to all the otheethods but
getpos that is presented in figure 1.17.

When methodstartis fired, it invokes some primitives from tlextern_data
to get the appropriate informations regarding the simdlat@ironment (vari-
ableds gets the speed increment and variadfjegets the position increment).
Based on the results, it updates the local contexte of tharios (transition
updatg and sends this updated information to the instanddéaye_controller
handling the instance.

procedure start (s:inout t_speed; p:inout t_position) is
-- variables local to the method

ds :t_speed;
dp :t_position;
’ s := s + ds;
end; b oot ap e_start end
M) L
[s = 0] / [
begin | start a update sm_out [mr]:method.back (s,p);
T &m_out [ar] :Anti_collision_system.notify(s,p);
sm_out [oar] :Anti_collision_system.notify_p(s,p);
&m_in; compute

ds := &io:extern_data.inc_speed (s,p,t);
dp := &io:extern_data.dist_variation (s, s+ds,p,t);>

Figure 1.16. LfP-BD for methodstart

Figure 1.17 shows the structure of a typical accessor cadithatget pos
retrieves from its context the value of attribuigehat stores the current speed
of the train. The first transition gets the call and the seamm®@returns a value
to the initiator.

procedure get_pos (p:inout t_position) is
end;
begin b_get_pos e_get_pos end
M)
® b O 1 ®

&m_in; a sm_out [adr_lnmngr]:return (p);

Figure 1.17. LfP-BD for methodget pos

Media Generic_addressed_comm. We also present the generic com-
munication media used to support all interactions betwberctasses of the
system (figure 1.18). As shown in the architecture diagratmas four ports:

Modeling and verifying behavioral aspects 25

reg associates an address to the media instaureg,releases the address and
activates the destruction of the media instanodn emits a message in the
media andn_out retrieves a message from the media. Messages are stored in
variablest ored_m

media_instanciation on out; -- Media types
begin type set_msg is set of message_stture;
Type set_adr is set of t_adr_m
R sreg[new_adr]; -- Mediavariables

me:t_adr_m :=in_adr
stored_m:set_msg;
. s1 shared ex_adr:set_adr,

lock

me := new_adr;
ext_adr := ext_adr + new_adr;

=
[target=me] 56
gin [target] :msg;

stored_m := stored_m + msg; [Stored_m /= {}]

sout #stored_m;

D

[target=me]
&in[target]:msg;

Terminate end

Figure 1.18. behavioral contract for medi@omm.

When an instance ofomm is created, it waits for an address that will
be used to select the messages to be stored (and retrievéet appropri-
ate client). Then it moves to stateady where messages can be inserted if
transitionl fires (the guard ensure that the message discriminant i$ eqihe
address associated with the media instance). Trangilliertracts a message
from variablest or ed_m (the guard blocks if this variable contains nothing).
WhenU is fired, the media moves in stapeirge ; all messages remaining
in the input binder are removed (transiti@) before the instance terminates
(transitionterminatg.

5. State space computation using DDD

This section details the implementation by mean®bbs of the BART
model expressed ibfP.

26

5.1 State coding by means of DDD structure

The computation of the reachable states requires a cahoefrasentation
of a state to enable efficient comparison.

It also implies the ability to add the states without genegaimbiguities.
Some simple principles can guaranty that no ambiguity veiflear despite the
dynamic characteristics of the state.

Ordering. To obtain a canonical representation, it is critical thatstate
and all its inner components are built with a defined deteistimorder on the
set of assignmentwériable := valug compaosing théDD.

For example, in order to represent sets of data, we defineingle sariable
with different values for each element of the set. The firtlealways gives
the size of the set. Additionally, we order the values. Thegarison of the
two sets will then be a simple comparison between the 2 quoreingDDDs
and doesn’t require a costly algorithm.

The state of the BART is composed of nested blocks. Each blooktent
and position within thedDD is deterministically defined. This order defines
the syntax of the state at all level of the nesting.

This deterministic order has also the advantage of favagimemory reuse.
Sharing of identical portions of tHeDD structure is supported by the library.

Problem caused by dynamicity. Once we have defined a deter-
ministic order on the sequences of assignments, and sineeantto compute
the set of reachable states, we need to be able to add albtiks stith no risk
of producing ambiguities. The typical case to avoid is tHated by the fig-
ure 1.19 below: Note that this case will also happen if thesehcorder is not
deterministic.

Such ambiguities are trivially solved when the state idcslly defined and
variables are ordered deterministically. However, whendilze of data stored
in a state can change dynamically in any location of M, ambiguities
are very likely to happen and the operation will lose compatibility with the
definition of the state.

To avoid this problem, we applied the following guidelinaghe represen-
tation of dynamic structures by meansdiiDs:

m each block of varying size must be prefixed with a same varigirt
will contain a different value that should depend on the siZand type
of the structure,

m an instance of a basic structure such as a binder, a set,agn awector
or a multiset is identified by one variable. This same vaeablused to
identify the elements of the structure,

Modeling and verifying behavioral aspects 27

V1 V1

=@®
=@

Figure 1.19. Ambiguity when adding DDDs.

m states composed of scalar(s) and/or basic structure(sjiffesent vari-
ables and must be built according a common unique order.

The prefixing of dynamic blocks acts as a sentinel that witirgaty that no
ambiguities can occure at the rank of the considered blokk.differentiation
will be done at the first variable if the blocks have differsities or inside the
block if only the values differ.

For instance, the multiset structure always starts witlsitneof the multiset.
Figures 1.20 and 1.21 illustrate two cases of additiombbs representing
multisets.

Figure 1.20. Adding 2 multisets when their Figure 1.21. Adding 2 multisets of same
sizes differ. size when data differ.

28

5.2

Structure of the Bart State

This section presents the coding of the BART state by meaa®0b. We
use the state description of an Ifp program as describedBin®state has the
following dynamic characteristics:

number of instances varies, (Train, Anticollision Systéwtgve Con-

troller and their associated Medium),

instance supports stacks, i.e. push/pop operations tbgtemsing pa-
rameters, insert/remove local variables and the retunmevat the pro-
gram countePC,

global binder stores message multisets at the beginningeo$tate in
the global area,

local binders store received messages and are attachechtinstance,
multisets instance variables store addresses,

messages are vectors of data which length depend on thegedgpa.

At the top of the hierarchy, the different components of a BAdRate appear
in the following order:

global variables,

global binder (binder all),
instances,

end of state (special marker).

All the instances have the same structure shown below:

begin instance (special marker),
local media,

local binder,

instance variables,

program counterRC),

stack (empty if not within a call),
end of instance marker.

The structure of the local media is simple:

media id (variablane),
message storage (multiset of vectors),
program counterRC),

A block pushed on the stack has the following shape:

parameters,
local variables,

Modeling and verifying behavioral aspects 29

= return value ofPC.

The order of the variables and structures has been choseveoos costly
explorations of the states. The analysis of data depeneehalps in deter-
mining the best directions for exploration and thus, theeof the variables
as they appear in the state.

The instances are grouped by class and arranged into tbeviio order:

instance of Line Manager,

instances of class Train,

instances of class Move Controller,
instances of class Anticollision System,
instance of Operator.

To each item described above corresponds a part of the Bigitding theDDD
of the state consists in concatenating all the parts togethe

The syntax of the state has been defined to allow easy changhe order
of the classes without changing the homomorphisms implénmgethe model.
It seems difficult to determine in advance which order willegbetter perfor-
mances when computing the reachable states. Some exptaiioercan help
determine the best order.

Note also that there is no order defined within a group of imcsta of one
class. The order is difficult to realize because it would dejgEn values that are
not yet known at insertion time. This is not causing a prohiethe addition of
the states because all instances of one class have the santarst However,
it may cause some problem with the canonicity of the reptasien. Solving
this issue requires implementing reordering homomorpéjsaasuming that a
total order can be found on an heterogeneous structurehwtas the case in
the BART.

State implementation. Variables of &DDD are identified by an integer
value. The value of a variable is also of type integer. To ligpugging and
writing efficient homomorphisms, types have been definedos&hypes are
embedded in the encoding of the variable identifier:

variable (local and global),
program counteriC),

block of variables,

arrays,

multiset,

binders (local and globals),
media,

instances,

30

= markers.

The type of variables can be directly tested in the code ofitireomorphisms
using masking operation on the variable identifier.

The messages are defined by a sequence of assignments asoshiogume
1.22. The values indicate the length, the destination, geration code and
the parameters of a message. There is no message type deftmdtsd the
messages are built using the variable of the hosting instérinder or multi-
set).

Length | Dest| Opcode Params

Figure 1.22. Message structure.

A number of C++ classes allows to generat@D for the various types of
structures. Classes corresponding to each type of instaaeebeen derived
from the classes listed above. These classes contain ipligliof instance
variables as they appear in tb®D. So, when writing an homomaorphism, it
becomes straightforward to refer to a particular variaBlenain class contains
all the components and allows to generate the whole BARE stat

5.3 Homomorphisms

The verification of &fP model by means dbDDs, requires the definition
of the homomaorphisms that represent ktHé operational semantics. We need
homomorphisms to identify all enabled transitions in otdecompute the set
of new states obtained after the execution of each one of.them

Basic homomorphisms. A set of basic homomorphisms has been
developped to manipulate the state. These low level homgmsns are used
to implement the transmission of messages, the evaluafigmegonditions
and the firing of transitions.

To enable communication among the instances, the followaioigomor-
phisms have been implemented:

binder all to media transfer of messages,

media to local binder transfer of messages,
instances to global binder transfer of messages,
local binder to instance transfer of messages.

To implement the firing of transitions the following homombisms have been
implemented:

= stack operation,

Modeling and verifying behavioral aspects 31

m assignments of scalars and arrays,

m basic operations on multisets,

= assignments using message parameters,

= precondition evaluation (expression evaluation).

Most of the transitions$ are implemented by means of two homomorphisms:
Testtransition(t) will return theDDD containing the states that satisfy the pre-
condition. Fire_transition(t) will return theDDD obtained after firing the tran-
sitiont.

The computation of the set of reachable states is performeddans of a
loop that evaluates each transition precondition. We stgpudy the execution
from a set of states if the associatedD is equal to a one already built. The
order in which transitions are studied allows to consideorjties between
transitions they are expressed.ifP.

Precondition evaluation and firing. The state may contain several
instances of a same class. The precondition evaluation imamphism {Test-
transition(t)) identifies and marks the eligible instances for a givensitam.
The variable representing the mark is set to 1 if the assstiastance satisfies
the precondition of the studied transition. If several anstes can perform
the same transition, the homomorphism produces a stateafdr @ncerned
instance with the corresponding mark set to 1.

The homomorphism that implements the actual firing of thasitan, (
Fire_transition(t)), has to find the 1 valued marks and to modify the state i
respect with the effects of the transition. Such an homotrisnp is composed
of basic homomorphisms as described earlier in 5.3.

The complexity of precondition evaluation increases wheaorities are at-
tached to transitions. Also the preconditions on thesessitians can depend
on the presence of a message in the local binder and/or a.glaydard is a
logical expression that can depend on global variables rastdrice variables.
Composition of operators on homomorphisms can be used teingnt se-
lects with priorities. The algorithm figure 1.23 shows hovinbplement them.

The advantage of this solution is its simplicity. Howeves tost of the suc-
cessive evaluations of the different transitions that ynmplltiple explorations
of the states may be prohibitive in the case of complex ateres. However,
after profiling, detection of bottlenecks can help deteemihich homomor-
phisms need to be optimized.

=]

5.4 Example

This example elaborates the homomorphisms needed to hinedtase of
the beginning of methodstart andgetposin the classlrain. These methods
can be called from stateadyand require the reception of a messtagé.start

32

Select(T1, ... Tn) sorted by decreasing priority:
currentpriority=priority(T1)
test=nul |
dddi n=i nput _states
foreach Ti in (T, ... Tn)

test_i=Test_transition(Ti)(dddin)
test=test+test_i;
result=result+Fire_transition(Ti)(test_i)
if (priority(Ti)<currentpriority)
dddi n=dddi n-t est
currentpriority=priority(Ti)

Figure 1.23. Computing transition firing from an alternative state witfopties.

for methodstartandtrain.get posfor methodget pos Priority of the transition
b_get pos(1) is higher then transitiob_start (2).

Based on this example we propose 2 implementations follpwlifferent
strategies.

First implementation. The first implementation relies on the algo-
rithm proposed in figure 1.23. In this case we just need foundraorphisms.

m Precondition evaluation df get pos: filters the states where an instance
of the classTrain is in the stateready, (PC==ready) and at least one
train.get posmessage is in the local binder.

= Precondition evaluation df start filters the states where an instance of
the classTrain is in the stataeady, the instance variabl&rain.s== 0
(no speed), and at least otmain.startmessage is in the local binder.

= Firing of b_getpos this homomorphism takes the output of the pre-
condition evaluation ob_getposas input and apply the following. In
the case where multiplgain.get posmessages are in the binder, a state
will be generated for each one of them, and the correspondiegsage
is consumed. For each new state, locals of meteighbosand return
value ofPCare pushed on the stack, tR€ is set to the next state in the
get posmethod.

m Firing of b_start this homomorphism takes the output of the precondi-
tion evaluation ob_startIn the case where multipkeain.startmessages
are in the binder, a state will be generated for each one of tlzad
the corresponding message is consumed. For each new etaks, bf
methodstart and return value oPC are pushed on the stack, tR€ is
set to next state in thetart method.

Then the algorithm in figure 1.23 can be applied to implemieatiranches.
The homomorphisms that do precondition evaluation need taplplied twice:

Modeling and verifying behavioral aspects 33

once to realize the testésttransition(T)), and once when composed with the
firing homomorphism to realize thére_transition(F) homomorphism.

Second implementation. The algorithm of transition firing with
priorities decomposes the input set of states into setatdssthat satisfy pre-
condition(s) for each priority. This means that the evaduabf preconditions
has to be done twice: one to find the states for a given priamitgrder to
substract those states from the input set, and one for finedgransitions.

This second approach implements the whole alternative tynmef one
homomorphism that takes into account all the prioritiesroékernative at the
same time. As soon as a precondition is invalid, the homohismpin charge
of the evaluation must retumull in order to invalidate the state under construc-
tion. The homomorphisms that explore the state create reassand carry on
the explorations of these new states in search of poteraia preconditions.
All explorations are discarded as soon as enough informatizalidate the
precondition under study. Invalidating conditions arequieed message is not
in the local binder, guard is not satisfied, priority is naithenough.

The following steps show how such an alternative can bezeglin 2 ex-
plorations.

Step 1 mark all the instances of cla3sain in the stataeadyand generate
states in order to have only one mark set in each new stats.stéy requires
the scanning of all the instances of the class Train as thegbeafigure 1.24
shows. This is a basic homomorphism applied in all prec@rdiévaluation
cases involving logical expressions. This constitutediteeexploration of the
whole state.

Figure 1.24. Search for candidate among the train instances.

Step 2and3 are chained and constitute the second pass on the state.

34

Step 2 From the output from stepl, explore until finding the locaider
of the marked instance, unmark the instance, generatesefgtaach message
contained in the local binder. The message is attached texpieration of
each generated state and is consumed from the local bindgefigre 1.25,
the example shows a case where two messages are in the lodat.bi hese
messages enable the firing of the two considered brancheard Gualuation
and priorities are needed to determine what is (are) the g#dite(s). A state
is created for each considered message and the explorétibe local binder
continues in each new state. Each new state has to be exjpionedhis point
to determine if it is valid, i.e. if it satisfies all the preabtions. Any message
that does not satisfy a precondition is not considered.

! !
| |
Begin class train instange v

@
;

—) LocBinder
1 1
MSG1 MSG2
:train.sta{ } =train.get_pos
(consumed MSG (consumed MSGL,
End class thaih'irriét'ah'(%é """""""""" W‘ o :
v v v

Figure 1.25. Exploring the local binder for relevant messages.

Step 3 This step is directly chained after the end of the exploratif the
local binder done irstep 2 The instance variables are fetched and guards at-
tached to the branches are evaluated. If the evaluationegbpditions with
the message attached durisgp 2is positive and the corresponding branch
has the highest priority among the other valid branches the state is alive
and the corresponding transition can be fired. If the evimloaif other pre-
conditions using the other messages are of higher pridtign the state is
discarded and will be removed automatically by returnirgrthll homomor-
phism. Figure 1.26 shows the case where all the precongitioe satisfied.
Finally only the priorities will decide which state(s) w#lrvive and which
one(s) will disappear.

5.5 Fairness

In our implementation, the fairness issue is addressedégltorithm that
computes the reachable states. In the Ifp model of the Baattitne has no

Modeling and verifying behavioral aspects 35

End Binder Local

Begin Instance Variables

(consumed MSG1,

(consumed MSG2), =train.start

=train.get_pos

End Instances Variables

?Priority([s::O] && consumed train.staﬁ)
: < :

- Priority(consumed train.get_pos)

Figure 1.26. Guard evaluation and destruction of invalid branches.

representation and reachable states that are logicaligatdyut physically im-
possible are computed. To remedy to this excess of comptagessand to
insure that all the trains are treated equally, we have dddidl separate the set
of transitions into two sets:

= the transitions that involve real time, i.e. the transiidhat model a
physical change of the system, in our case the simultaneodgioation
of the positions of the train,

m the other transitions.

This solution avoids the use of a global clock variable, Wwhicould cause
an endless computation of new states. It allows some fléyiloih the method
used to compute the reachable states, whereas the paititipaf the set of
transition is left to the user.

The reachable states computation algorithm, will complitdhe reachable
states from the current position of the train and will ignalldransition affect-
ing of the physical state of the train. Once all the state® teeen computed,
the position modification transitions are examined on tlieoaccumulated
states. These transitions are applied as long as new statdsecproduced.
Then, the states that reflect the simultaneous update odim$twill be selected
for the next iteration. This filtering process is criticalawoid the generation
of useless states considering the position of trains ardifit time.

The following algorithm on figure 1.27 depicts the reachaitége computa-
tion with equity. FunctioApply.All _TransitionN TSET STATESPROGRESS
accumulates irSTATE She states produced by applying all transition con-
tained INnTSET. PROGRESS set to true if new states are produced. The
function returns the accumulated states.

36

FunctionFilter (STAT E $filters the set of stateSTATESand retain any
state that is not intermediate. In the present case, aissthgt represent a
simultaneous update of the positions of the trains are kegpreturned by the
function. Additional condition can be added as shown in 5.6

dddin : DDD representing the initial state

Tl : Al transitions except the transitions of T2

T2 : Al transitions updating the position of a train
NewSt ates : DDD containning intermediate states conputed
during an iteration

AccStates : Accumul ated states

NewSt at es=dddi n;
AccStates=nul | ;

whil e (making_progress)
meki ng_progr ess=true;
/1 conpute intermediate states
Whi | e(maki ng_progress) {
NewSt at es=Appl y_Al | _Transition(T1, NewStates, making_progress);

QO dAccSt at es=AccSt at es;
AccSt at es=Acc St at es+NewSt at es;

maki ng_pr ogr ess=true;
/1 update position of trains
Whi | e(maki ng_pr ogress) {
NewSt at es=Apply_Al | _Transition(T2, NewStates, making_progress);

}
AccSt at es=Acc St at es+NewSt at es;

/1 discard all states that do not update all train position
NewSt at es=Fi | t er (NewSt at es) ;

maki ng_pr ogr ess=true;
if (AccStates==0 dAccStates) making_progress=fal se;

Figure 1.27. Main loop for state space computation.

5.6 Evaluation

The implementation of the model required the implementatiomore than
one hundred transitions and the elaboration and computatioa state that
could contain up to (&t + 4) processes wheteis the maximum number of
trains.

State space computation. The state space computation has been
executed with different parameters in order to check theachpn the size of
the result.

Modeling and verifying behavioral aspects 37

The experiments were conducted on a 2.2 Giga-hertz Pentiomchine
with 512M of memory. Two additionnal hypothesis were addethe model
in order to fit the result in the available memory.

First hypothesidd 1, assumes that all local communication between a me-
dia and its associated instance are treated before théopssitf the trains are
updated. This allows us to discard cases of late asynchsamatification mes-
sages that may lead to wrong decisions in the move contrditegse specific
cases could be studied in a separate experiment. This registls weak in the
meaning that late messages could be considered as invadillided inH1 is
the following assumption : theineManageronly attempts to insert the next
train on the railroad after and before the updating of thétjpos. The inser-
tion operation takes a short firing sequence that cannottbganed with those
updates. Again, a separate experiment could study the tropeterlacing the
train insertion and the updating of positions.

The second hypothesi42, is stronger and assumes that in additiokith
no message resides in any storage (binder, media, locainmthen the posi-
tions of the trains are updated. This second hypothesisoisgetr and restricts
the number of computed states because it also affects thalddimder. It com-
pletely dissociates the model from the physical represientaf the trains and
generates artificial constraints. The results show the datngfthis hypothe-
sis even when the size of the global binder is minimal. Inicigduch strong
hypothesis simplifies the model and can help in the debuggiiagess, while
still covering all the transitions in the model.

All the execution were using the same railroad and samestraidels. The
physical model was generating 6 positions for the trainsamelast 2 cases of
potential collision detection leading to the processingrmkrgency situations.

The following tables summarize some of the experiments donall cases
presented here, all the accumulated states are stored iomnehne resulting
DDD represents the reachable states of the system under diffgneothesis.

ColumnSize Global Bindeis the capacity of the global binder.

ColumnSize Local Storages the capacity of local binders and associated
media.

ColumnAccumulated States the total number of states.

ColumnState max lengtks the maximum length of the state by means of
number of variables.

Column Size DDD(sharing is the size of theDDD representing all the
states by means of number of nodes. Shared nodes count foinde the
sharing is enabled by default, this is the number of hodasdtio memory.

ColumnSize DDD(no sharing is the size of thédDD representing all the
states by means of number of nodes as if states were not ghdentical
nodes. Comparison with the previous value can give hintsemjtality of the
coding of the state. A good sharing is critical to save menspgce.

38

Tables shows the impact that binders and media capacitesdmthe com-
putation of state.

Table 1.1 considers 1 train with hypothebig.

Table 1.2 considers 2 trains with hypotheldig.

Table 1.3 considers 2 trains with hypotheldis.

The results suggest that the capacity of the local bindemagdia have a
limited impact. The most important parameters are the nurobgains, the
hypothesis and the capacity of the global binder. Note tmatésults in 1.3
were limited due to lack of memory.

Size Global| Size Local | Accumulated State Size DDD | Size DDD | time
Binder storage States max length| (sharing) | (no sharing)| (sec)

3 1 10606 118 8343 250405 11

4 1 40099 124 18872 853917 27

5 1 74440 130 29222 1.54e+06 46

3 2 48237 121 10708 994775 17

3 3 62068 121 11320 1.25e+06 21

3 4 63706 121 11165 1.28e+06 21

Table 1.1. Impact of binder and media sizes on state space computattoain and H1.

Size Global| Size Local | Accumulated State Size DDD | Size DDD | time
Binder storage States max length| (sharing) | (no sharing)| (sec)

3 1 286339 182 101600 1.03e+07 | 1430

4 1 335827 182 122403 1.24e+07 | 1874

5 1 347075 182 134551 1.29e+07 | 2099

3 2 363981 182 97713 1.29e+07 | 1379

3 3 363981 182 97713 1.29e+07 | 1378

3 4 363981 182 97713 1.29e+07 | 1379

Table 1.2. Impact of binder and media sizes on state space computattoains and H2.

Some additional testing aiming at evaluating the impachefdache and the
garbage collector are ongoing in order to optimizei® library.

Model debugging with the DDD implementation. Since all
the states are stored in memory by meansba, properties can be checked
by writing homomorphisms and apply them on theD. Among properties or
bug found during the implementatio, one can cite:

= Minimum resources necessary to cover all the model : redelsistes
computation shown and confirmed that the minimum capacityhef

Modeling and verifying behavioral aspects 39

Size Global| Size Local | Accumulated State Size DDD | Size DDD | time
Binder storage States max length| (sharing) | (no sharing)| (sec)

3 1 2572353 197 207273 7.61e+07 | 4023

3 2 50765313 197 237542 1.13e+09 | 8152

3 3 53812153 197 230360 1.21e+09 | 8313

3 4 53887381 197 227043 1.21e+09 | 8283

Table 1.3. Impact of binder and media sizes on state space computaticains and H1.

global binder was 3. If the capacity is smaller than 3 the rhizlaot
covered and all transitions are not alive.

= Incorrect specifications : the checking of the reachableestahown
structural bugs in the model, such as dead-lock situationssing ac-
knowledge messages and incorrect preconditions.

m Incorrect synchronization : incorrect synchronizatiordfication be-
tween the media and the instances showed undesired states thie
addresses of media instances are released and reassidoes rhes-
sages are purged from the binders.

= Corner cases : many corner cases situations were foundsisiegspace
computations. Among them, we mention : instantiation argirdetion
procedures, initialization of the system.

We also validate the critical properties presented in sac8i.4 using the
state space generated usipDs.

6. Conclusion

In this chapter, we have shown on the BART case study, theoapprtak-
ing in input a formal specification of a distributed systenthia L fP notation
and computing the state space in order to study propertidseafystem. The
technique used to encode the state space reli@ban

This experience has shown that the approach could be awdraat that
the result could be used to validate properties on the systerd to identify
bugs and potential problems in the specification.

Even if theDDD library we used for the study presented in this chapter is
at a beta stage, we got interesting results consideringhtbahodeled system
contains some difficult elements regarding model checkasgd approaches:

= dynamic instantiation and removal of objects,

= complex communication environment involving a dynamicradding
of objects, synchronous and asynchronous communications,

40

= numerous interacting tasks,

= emulation of high level mechanisms : remote procedure ,csiégks,
parameter passing,

m fairness issues.

Further work on thedDD library will use this implementation of the bart
system to evaluate enhancement on the cache and garbagetaolmple-
mentation.

The presented approach is of interest because it considevettification
problem from the modeling phase, thankd4 fd° that offers a reasonable com-
promise between standard and formalization. The idea isonige a notation
that is closer than the ones engineers are used to (typigslly-). This study
proved that it was possible to model a large and realistitegysBased on this
experimentsL.fP has been chosen as a pivot notation in M@RSE project
(french-government founded RNTL program) that group togetndustrials
partners (Sagem, Aonix) and university laboratories (L.alhP6).

References

[Ake78] B. Akers. Binary decision diagramiEE Transactions on Com-
puters 27(6):509-516, 1978.

[Bos99] P. Bose. Automated translation of UML models of &ettiures
for verification and simulation using SPIN. In Robert J. Haid
Ernst Tyugu, editorsl4th IEEE International Conference on Au-
tomated Software Engineering, ASE'98EE, 1999.

[BRB90] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficiemiple-
mentation of a BDD Package. Ri7th ACM/IEEE Design Au-
tomation Conferenggpages 40-45, Orlando, Florida, June 1990.
ACM/IEEE, IEEE Computer Society Press.

[CEPA'02] J. M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poittghand
P. A. Wacrenier. Data decision diagram for Petri nets aimlys
Proc. of ICATPN 2002volume 2360 ofLNCS pages 101-120.
Springer Verlag, june 2002.

[GKRO2] F. Gilliers, F. Kordon, and D. Regep. Proposal for addl Based
Development of Distributed Embedded Systems2®32 Mon-
terey Workshop : Radical Innovations of Software and System
Engineering in the Future2002.

[GLM99] S. Gnesi, D. Latella, and M. Massink. Model checkingl state-
chart diagrams using jack. #th IEEE International Symposium
on High-Assurance Systems EngineeriitEE, 1999.

REFERENCES 41

[IT97] ITU-T. Open Distributed Processing, X.901, X.902,983 and
X.904 standard. Technical report, ITU-T, 1997.

[KLOZ] F. Kordon and Lugi. An introduction to rapid systemopotyp-
ing. IEEE Transaction on Software Engineerji28(9):817-821,
September 2002.

[Leva7] N. Leveson. Software engineering: Stretching thets of com-
plexity. Communications of the ACMO0(2):129-131, 1997.

[LG97] Lugi and J. Goguen. Formal methods: Promises andlgmah
IEEE Software14(1):73-85, January / February 1997.

[OMG99] OMG. Omg unified modeling language specificationrsian 1.3.
Technical report, OMG, 1999.

[OMGO01] OMG. Initial Submission to OMG RFP’s: ad/00-09-01ML 2.0
Infrastructure) ad/00-09-03 (UML 2.0 OCL). Technical repo
OMG, 2001.

[QvSP99] D. Quartel, M. van Sinderen, and L. Ferreira Pirésmodel-
based approach to service creation7tim|[EEE Computer Society
Workshop on Future Trends of Distributed Computing Systems
pages 102-110. IEEE Computer Society, 1999.

